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motivated a variety of techniques for explaining their outputs. Such explanations are however typically
produced after model training so there is no guarantee that models learn faithful attributions, a goal they
were not trained for. We evaluate the impact of different penalty terms in the loss function that promote
explainable feature attributions, and that can be learned during training in an unsupervised way. We show
that explainability-constrained models produce better saliency maps based on multiple metrics and tests.
Regularizers imposing locality, fidelity and symmetry properties lead to the best performances in terms of MoRF

1. Introduction

In the last decade we have witnessed the rise of deep learning (DL)
in a variety of different fields [1,2], spanning from computer vision to
natural language processing. DL is gradually shaping and affecting our
daily lives and promises to do so even more in the upcoming years.
However, despite deep neural networks (DNNs) achieve impressive
performance in multiple tasks, their decision process remains largely
unknown. For this reason they are often referred to as black-box mod-
els. Even if, in some cases, we might not be interested in the underlying
reasons behind DL’s predictions (e.g. in some commercial applications),
there are relevant domains where understanding and not just fitting be-
comes of pivotal importance: safety critical systems, health and natural
sciences. Providing a trustworthy explanation together with an effective
solution is necessary when applying DL to industrial environments
where reliability is a must [3], in medicine where accountable diagnosis
and management of patients’ treatment is crucial [4-7], and physics
where the main interest is in discovering general principles and laws
that describe a process or even a class of processes [8-12]. Moreover,
interpreting machine learning models can assist people in recognizing
confounding factors in their training data or even dangerous and unfair
relationships that models might learn unless we find ways of avoiding
that. It is then necessary to make DL models more advantageous to us
and safer by addressing the issue of their interpretability.

One possible solution consists in designing DL architectures which
are more interpretable by construction. A recent work [13] introduced
self-explainable neural networks which can be viewed as a non-linear
generalization of linear models obeying a Lipshitz condition locally.
Such a property can be satisfied thanks to the decomposition of the
network architecture into a basis of functions or concepts and coeffi-
cients. Learning semantic concepts rather than just weights has been
suggested also in [14], where convolutional neural networks (CNNs)
are modified such that hidden-layer activations are whitened to align
with predefined concepts. A related method introduced in [15] features
a CNN for classifying images that uses prototypical aspects of each class
rather than pixels directly. Despite these notable exceptions, the field
of transparent DL architectures is still in its infancy and restricted to
specific applications. More critically, it is not always clear how flexible
these models are and whether they retain the performance of standard
DL models. In general, fully transparent models lose by construction
most of the complexity of artificial neural networks and, thus, tend to
be closer to decision trees or linear models either in a local manner or
in some parts of their structure.

The most popular approach is represented by explainable Artificial
Intelligence (XAI) [16-24]. In this case DNNs are not modified but their
predictions are accompanied by post-hoc explanations. Most methods
for computing such explanations exploit the gradients of the trained
network with respect to an instance and assign a score to all the input
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features, eventually producing a map or saliency vector [25-30]. Since
they are model agnostic techniques, there has been a widespread use
of XAl in many applied domains. Remarkably, xAI helped us realizing
that, in some cases, models do not actually learn meaningful patterns
but rather rely on shortcuts and spurious correlations and end up pro-
ducing biased predictions. For instance, a common mistake DL models
commit is that of using background pixels to classify images [22].
Nonetheless, having multiple XAl techniques translates into multiple
possible explanations to decide among, which can be troublesome.
Moreover, it has been shown that some xAI do not pass simple sanity
checks [31-34]. This raised some doubts on the reliability of saliency
methods: either XAl methods fail to identify the correct attributions, or
DNNs are right for the wrong reasons or, most likely, a combination
of these two reasons. While there are extensive efforts to improve xAI
techniques [16,17], much less attention has been devoted to finding
ways of ensuring that DNNs learn explainable feature representations.

One could try to optimize some loss function that is believed to
make the model more interpretable, for example, reducing complex-
ity or improving the accuracy of feature attributions. The idea of
optimizing saliency maps by constrained optimization was originally
introduced in [35]: authors aimed to minimize not only the prediction
error but also model’s derivatives with respect to the input. This
way, small changes in the input samples (e.g. due to noise) would
not affect the error made by the model. The overall result was an
improved model’s weight distribution. However, their focus was not
explicitly on the interpretability of DL models. Such an approach was
rediscovered and popularized in [36,37] where gradients computed
only with respect to irrelevant dimensions were regularized. These
annotations were provided by domain experts knowing which features
of x were (not) useful. Following such supervised schemes led to more
robust models against adversarial attacks [37]. The incorporation of
prior knowledge was also explored in [38] by minimizing the difference
between contextual decompositions and ground-truthed explanations.

A fully unsupervised extension of Ross et al. [36] and Rieger et al.
[38] was recently suggested in [39]: at each training step a perturbed
input X is produced by masking the features with low gradient values,
and then a penalty given by the Kullback-Leibler (KL) divergence
between model’s output at x and at x is minimized. Thus, unimpor-
tant features do not play a role in model’s decision and explanations
get sharpened. Another unsupervised approach was proposed in [40]
where the penalty was the square difference between model’s output
and its local approximation given by LIME [22].

Attribution methods other than input gradients have been consid-
ered in [41,42]. The former [41] optimized the Wasserstein distance
between the integrated gradients [28] of nearby samples, while Pillai
and Pirsiavash [42] penalized the Grad-CAM [29] values over spurious
features introduced as noise in input data. Different types of attribution
priors (e.g. imposing smoothness) were considered in [43]. Finally,
the increased computational cost due to attribution optimization was
alleviated by proposing a subclass of neural networks in [44].

In this work, we greatly entend the types of possible explainability
constraints in the loss function, which can be optimized, enabling
us to enforce different kinds of desireble properties on the saliency
maps. Moreover, unlike other works, we do not use ground-truth values
(which are not available in most situations) for guiding the attri-
butions scores during training but rather objective criteria suggested
by axioms or formal results on locality and equivariance [45,46], and
inspired by fidelity metrics for quantifying the goodness of saliency
maps [34,47]. In this way, explanations are learned in an unsupervised
fashion without the risk of enforcing confirmation biases. As main
contributions of the work, we (1) introduce novel attribution priors that
promote desirable properties of the saliency maps at training time; (2)
showcase that these constraints for explanations, which are not satisfied
by unconstrained models, can be learned via gradient descent without
affecting model’s accuracy; and (3) find that imposing locality, fidelity,
and symmetry allows us to identify reliable features whose relevance
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is shared across different models even those whom have not been
constrained for such specific priors. This suggests that, when adding
constraints for the explanations, one also finds attributions which
are more generalizable and less specific to a given model. Finally,
we give empirical evidence of performance using several quantitative
metrics, which had been previously introduced in the literature, and
perform an extensive comparison of the commonalities and differ-
ences between the fature attributions obtained with (and without)
explainability constraints. A simple qualitative inspection and visual
comparison of prior-constrained saliency maps for a few test samples
is also discussed. All the experiments can be reproduced by using
the public repository at: https://github.com/IPL-UV/xAI-constrained-
losses.

2. Axiomatic metrics for saliency map evaluation

Consider a typical classification problem, where we want to learn
a function f R? — R¢ on a subset of the input data (X,Y) ~
D,..in C D, being ¢ the number of classes, i.e. the target for a given
instance x is y € R¢. The function or mapping f can be a neural
network and y = f(x) = (f},..., f.) the output of a softmax layer.
Let us also assume that x = (x;,x,,...,x,) € [0, 114. Then, we denote
by ¢(f.x) = (¢, s, ..., $;) € R? the feature attribution vector that,
given a trained model f, associates a score to each of the 4 input
dimensions of the sample x. A high score ¢, means that the kth
feature is relevant for predicting y according to the mapping f and
the algorithm used to compute ¢(f, x), on the contrary low attributions
identify less important or irrelevant input features. In this study, we will
only consider model-agnostic ¢(f, x) that do not depend on the specifics
of the model (e.g. network’s architecture), whose only requirement
will be that of f being differentiable. The algorithm for attributions is
often a function of the gradient of the predicted output with respect
to the input, i.e. ¢ « V. f [25,26], which can be seen as a first-
order approximation of the model near x. The function ¢ is often
referred to as saliency map or more generally as post-hoc explanation.
The explanation induces a natural ordering in the input space, and we
call S; = S(¢,) the ordering of the features which are sorted by .S(-) in
descending order of explanation score.

A lack of ground-truth explanations and limited theoretical un-
derstanding of both DNNs and xAI have led to a growing class of
metrics [31,34,47-52]. Each of them measures a different property
that a correct explanation should have according to empirical criteria
or formal axioms. A metric M(x, f,¢) quantifies how accurate is the
explanation ¢. We here consider the following four.

Most relevant first out. The concept of fidelity of the explanation was
introduced in [47]. If ¢(f, x) encodes reliably the model prediction at
x then the progressive removal of the most important features should
deteriorate the accuracy of f at x. The Most Relevant First out (MoRF)
procedure consists in computing the ratio between f(x) and f(x;¢ §,=0):

MoRF, =1—<%>, 6))

where (-) stands for the average over all test samples, f,, = max(f(x))
is the component of the softmax according to the prediction on the
original instance, and x;e g, is the perturbed input where the first 5
most relevant features have been inhibited. The ordering S, is specified
by a given xAI saliency map ¢(f, x). Features can be removed either
by setting them to O or the average or any other ‘neutral’ value. By
varying the amount k of removed dimensions in (1), one obtains a
perturbation curve that describes how the prediction for the class ¢
changes as more features are cancelled out, from the most to the least
important. The Area Under the MoRF Curve (AUCy.gr) provides a
summarizing quantitative measurement of the correctness of ¢: the
higher the AUCy;,zr the more accurate the estimate of input feature
importance. Let us stress that such a correctness is according to the
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model and does not refer to human judgement nor to causal notions of
feature importance. In other words, it is a measure of how well the xAI
method captures the characteristics that are actually important for the
model itself to make a prediction.

Faithfulness. Another metric that relies on perturbing the input x ac-
cording to the attributions ¢ is faithfulness [13,34], which equals the
Pearson’s correlation coefficient p(-,-) between the attributions of .S,
features and the difference between the output at x and at x;cg,—o:

F = {p(ds. [;(x) = [i(Xie5,20)))- @

where ¢ = (#s, bs,> - ds,) if k =1, i.e. if we perturb the features
one by one, otherwise ¢g € R"<d for 1 < k < d, while f,(x) is the
element of the softmax corresponding to the ground-truth label /. The
perturbed input can be obtained by setting .S} features to 0 or to some
other appropriate value. A high F means that the attribution scores
¢, correctly reflect model’s behaviour, since there is a high correlation
between the changes in the attribution and those in the predictions of
the model.

Complexity. It is generally believed that the effectiveness of neural
networks relies on the fact that the relevant information is encoded
in a manifold of much lower dimensionality than that of the input
space R? [2]. Therefore, ‘good’ feature attributions ¢, should be sparse
and concentrated in a few input dimensions. Thus, complexity [51] or
entropy can be used for comparing different ¢(f, x):

P, () In(B4(i)), where Py(i)= d'";l
i=1 Zi:l |¢1|

The lower C the less complex the explanation and, possibly, the more
faithful to the latent representation learned by f. According to Bhatt
et al. [51], we should favour those attributions ¢(f,x) which are
concentrated in a few input features. However, note that the minimum
value for C is obtained when Py(i) = 1 i.e. ¢; # 0 for only one feature .
Since typically the effective dimension is greater than 1, an attribution
such that C = 0 will not be a correct explanation, and thus in general
the best value for C will depend on the specific problem [53].

C=- 3

d

Remove and retrain. Most of the metrics for saliency maps rely on
some form of perturbation of the test data. However, as DNNs can
easily deteriorate in presence of distribution shifts [2,54], it is hard
to determine whether the model errors in both (1) and (2) are due
to the fact that important features have been identified by ¢(f, x) and
removed or just a consequence of the fact that the perturbed input is
an out-of-sample for which the model struggles to make the correct
prediction [31,52]. To obtain a fair evaluation of feature attributions
the RemOve And Retrain (ROAR) test was introduced [31]. First, one
computes S; = S(¢;(f,x)) for all test and train instances, using the
preferred attribution method to get ¢. A perturbed (or masked) dataset
is constructed by taking x;c, — in both train and test data. Then, a new
model is trained over the perturbed data and its performance is evalu-
ated on the perturbed test set. The procedure is repeated for different
levels of degradation by increasing the number of perturbed features
k and thus a perturbation curve is obtained. Owing to L-curve theory,
the steepest the curve the better the explanation ¢(f, x) is considered.
Notice that, even if ROAR corrects for distribution shift effects, in each
iteration a different model is trained and thus it is difficult to establish
to what extent these new models reflect the original one.

3. Explanation-constrained loss functions

Training the classifier f = f(X, w) generally involves minimizing a
loss function of the form:
N ¢

Lw, X,Y) == 3" Yy log@) + AQw) = Lop(Y,w) + 4Qw),  (4)
n=1 k=1
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where L is the cross-entropy term and Q(w) is the regularization
term, N is the total number of training samples and ¢ the number
of classes in the target variable y,,. The regularization term usually
takes the form of either the #, or #, norm of model weights w.
Following [36,37], we here generalize the regularization term as:

Q= Q¢(f, X)), )

where now 2 imposes a constraint on the feature attribution ¢(f, X).
In this way desirable (explanatory) properties can be enforced for dif-
ferentiable Q. The penalty £2 is called attribution prior or explainability
constraint. Following [55], one can reformulate the learning problem in
Eq. (4) as:

p(M|X) x Aglgﬁp(X [M)p(M) (6)

being M a given model, p(M|X) the posterior probability distribution,
p(X|M) the likelihood and p(M) the prior over all possible M in the
set M. The prior p(M) can be used to impose properties on the class
of models such as sparsity. For instance a Gaussian prior on w is
equivalent to ¢, regularization. Explainability constraints can be seen
in the same way as priors that enforce some degree of interpretability
(which will be defined below in different ways through different types
of penalties) on the models. Finding the explicit form of p(M) for many
Q(p(f, X)) can be highly non-trivial and it is part of current research
(see e.g. the discussion in [43]).

Firstly, we review two attribution priors already appeared in the
literature, namely vanilla gradient regularization [36] and the smooth-
ness prior [43]. Then, with the goal of improving the quality of ex-
planations, we suggest four new constraints to be optimized during
training: fidelity, locality, symmetry and consistency. These additional
regularization terms, which have not considered before, impose differ-
ent properties on the explanations and, as proven in the experiments,
are able to improve the interpretability of the saliency maps obtained
in previous studies in terms of MoRF and ROAR scores. This also shows
the flexibility of the proposed approach and demonstrate the possibility
of introducing a variety of explainability constraints even beyond those
considered here. In this study we assume ¢(f,X) = Vyf [25-27],
unless otherwise specified.

Regularization. Inspired by regularization theory, one can extend it to
model’s gradients as done in [36]:

N d ¢ 2
QXN = VxSl =3 Y (%% 3 log@nu) : @
1

n=1 i=1 ni je=

which is known as input gradients regularization or double backpropa-
gation as it requires computing the quantity V,Vy f during training.
Here N is the number of training samples and d the number of features
(e.g. the number of pixels in a black and white image). Notice that, if
the model is linear, then (7) is equivalent to #, (or #,) regularization. In
the simplest case the matrix A,; reduces to a constant scalar [35] and,
thus, large values for all gradients are discouraged. As a result, small
changes in the input x do not affect the model output thereby improv-
ing generalization [35]. Alternatively, when supervised annotations are
available, one can penalize specifying non-informative components of
A,; [36,371.

Locality. We here propose a possible extension of input gradients
regularization in the form of a locality prior, particularly useful in
image or language processing. To avoid focusing on spurious or noisy
dimensions, we suggest the following penalty term:

N d

QP X)) ==Y Y (A log(@y) + (1 — A, log(1 = 6,)) , (8)
n=1 i=1

where ¢ € [0, 1]1V*? are the normalized input gradients and A, = 0 for

all the irrelevant dimensions. If x has a zero background then A,; = x,;,

otherwise A can be derived from a segmentation mask or clustering. In

many cases, especially when x is an image, the signal is concentrated in
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a few input dimensions and the remaining pixels are just background or
noise. There are some popular examples in which trained models end
up relying fallaciously on background features and eventually produce
biased predictions [22]. The above introduced penalty forces the model
to neglect such features.

Smoothness. In [43], inspired by total variation concepts in image
processing, the authors imposed a smoothness constraint by penalizing
the total difference between attributions of adjacent pixels:

N hw
QP XN =Y, D b+ =, ©)
n=11i,j=1
that assumes a zero-mean Laplace prior p(M) on the distribution of dif-
ferences of nearby attributions (see again [43] and references therein).
Here h and w stand for the height and width in the input image
respectively. In this way pixels which are close to each other spatially
will be assigned similar attribution scores by the model.

Fidelity. Removing informative features according to ¢(f, X) should
make the output of the classifier change, cf. Section 2. We introduce
a suitable attribution prior for enforcing the fidelity of explanations:

Ao @ = L L

I
ol -¢)), (10)

where (-) is the average over training X or a batch, d(-,-) is the angular
distance or cosine similarity (where f - f stands for the scalar product
between the two vectors), ® denotes the Hadamard or component wise
product, ¢ are the normalized input gradients, and hyperparameter
e > 0 controls the fidelity between f(x) and f(x): e.g. for ¢ = 0
the fidelity constraints forces f(x) and f(x) to be orthogonal, i.e. a
complete degradation of the model output when the salient features
get cancelled or attenuated. The attributions ¢ are normalized in such
a way that the masked or degraded input X (which takes values in the
range [0, 1]) contains (close to) zero signal in those dimensions with
higher importance ¢ ~ 1. Different functions for the distance d(,-)
could be easily implemented, e.g. the Euclidean distance, depending
on the form of the output of the model f(x), as well as different losses
Q(p(f, X)) to enforce some degree of fidelity in the explanations (see
(1.

Consistency. A trustworthy and interpretable explanation should be
general enough to encode patterns common to all (or most of the)
elements in a given class rather than traits specific to each instance.
Arguably, close by instances in the input space that belong to the same
class should have similar explanations. We here translate such property
of consistency [56,57] into the following attribution prior:

¢ Ny
d b m
s X0 =3% 3 1_d((ﬁ" f y o

=1 nm=1

QP X)) = max (0, (d(f(x), fR))) =€),

where N, are all the instances in a batch (or in the whole training
set) predicted to belong to class k, and d is a similarity measure. As
in (10) we choose the cosine distance but the extension to other types
of similarity measures is immediate. The above regularization terms is
such that similar instances (i.e. with cosine similarity close to 1), which
are predicted to be in the same target class, should also have similar
attributions (i.e. d(¢,. ¢,,) = 1). In this way the model is required to be
consistent in its explanations.

Symmetry. There is a growing evidence that DNNs exploit the sym-
metries in the input data distribution. This is extensively used in data
augmentation techniques [58-60], but also as a guiding principle for
designing new architectures that encode a class of symmetry trans-
formations by construction [45,61,62]. Following this perspective, a
correct explanation ¢ should identify a subset of semantic features that
have good transformation properties [46], i.e.:

!
x, =Tyx;— ¢ = Ty (12)
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being T}; a representation of a given transformation operator, e.g. the
generator of translations or rotations in a plane. Whether such a prop-
erty is satisfied depends on the model f as well as on the attribution
method for computing ¢. We impose (12) by introducing the symmetry
attribution prior:

Q(f. X)) = 1= (|d@ (x. ). ", /I, 13)

with x” and ¢’ as defined in (12) and we consider rotation transforma-
tions. In short, one requires that the transformed attributions are equal
to the attributions of the transformed input.

4. Experimental results

In all our experiments we implement shallow CNNs made of two
convolutional blocks and one fully connected layer with softmax ac-
tivations and restrict the training between 6 to 8 epochs, in this way we
reduce the additional computational cost carried by the penalty terms
and do not compromise the analysis of expressiveness by using poten-
tially overfitted models. The regularization parameters 4 are obtained
through grid search in the range [0.05, 1.5] for each constraint. All mod-
els are implemented in PyTorch and trained with Adam [63]. Further
details on the architectures, attribution priors and hyperparameters, as
well as additional experiments can be found in Appendices A.1-A.3.

Firstly, we notice that all trained models can reach near to state
of art performance on MNIST [64], even if the training accuracy can
have a slightly less steep increase depending on the explainability
constraint (see Fig. 1la). Confirming the early findings in [35], all
constraints improve the distribution of the learned weights to different
degrees as compared to the unconstrained model (i.e. baseline). This
observation holds in particular for vanilla input gradients regularization
(7) and smoothness (9) (see the second plot in Fig. 1a). Fig. 1b shows
that traditional training without regularization does not optimize any of
the feature attribution properties. This suggests that the trained models
have learned distinct patterns for making predictions.

We claim that, even if looking at the accuracy only, explainability-
constrained models are almost indistinguishable from the baseline
model, yet the former lead to more interpretable and reliable explana-
tions. In order to assess whether attribution priors truly enable models
to better discriminate between more and less important features, we use
different constraints (cf. Section 3) and metrics (cf. Section 2). Results
are shown in Fig. 2, and Table 1 summarizes the metrics for the saliency
maps.

From the first plot in Fig. 2a we can distinguish two groups of
models, i.e. models with locality (8), fidelity (10) or symmetry (13)
constraints which have a high MoRF score (1) and the others with lower
scores (see also Table 1). Moreover, if now we recalculate this metric
for all the models but using e.g. the feature attributions ¢ = V., foymmetry
from the model with symmetry penalty to decide in which order S,
the input features should be removed, the MoRF curve gets steeper
for all the models including the baseline (see the middle plot in 2a).
The opposite behaviour is observed if we employ the ranking from the
unconstrained model instead, i.e. S = S(¢(fpaselines X)) (€€ last plot
in 2a). This means that the explanations obtained from the model with
the symmetry regularization (13) are more trustworthy for all the other
models too, and conversely traditional training results in less reliable
attributions regardless of the considered model. Similar conclusions
hold for locality and fidelity, see Appendix A.2.

Attribution priors allow us to improve also the faithfulness (2)
score (especially input gradient regularization and smoothness) and the
metric for complexity (3), see Table 1. In particular, it is interesting to
note that the lowest complexity is achieved thanks to the symmetry
penalty. This can be explained by the fact that requiring the correct
transformation properties under rotations reduces the number of al-
lowed coordinates thereby eliminating the spurious input features. Such
features can be for instance background pixels or objects in images
or also corrupted patches. In general they can be defined as all those
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Fig. 1. (a) Training accuracy per epoch for all models. Explainability constraints generally slow down learning, but similar accuracy is reached eventually. All constraints act as
weight regularizers, smoothness and gradient regularization leading to especially reduced weight variances. (b) Explainability constraints versus the training steps. None of the
desired properties encoded in the attribution priors get automatically optimized by the baseline model trained without penalty terms. From left to right and top to bottom, in the
order we display the following regularization terms: input gradients regularization (Eq. (7)), consistency constraint (Eq. (11), locality constraint (Eq. (8)), smoothness constraint
(Eq. (9)), fidelity constraint (Eq. (10)) and symmetry constraint (Eq. (13)). The red curve represents the trend of the corresponding regularization term in the baseline model
(i.e. without any regularization) during training, while the blue curve is the same quantity computed with the model that contains that specific constraint and, thus, by construction

decreases over the epochs.

Table 1

Metrics for saliency maps.
Constraint MoRF  Faithfulness = Complexity =~ ROAR  Gaussian  Block
Baseline 0.696  0.800 4.40 0.835  0.643 9.79
GradReg 0.658  0.909 4.33 0.767  0.660 9.89
Locality 0.846  0.707 4.35 0.753  0.388 9.53
Smoothness  0.688  0.894 4.33 0.755  0.818 9.76
Fidelity 0.827 0.797 4.30 0.724 0.470 9.93
Consistency ~ 0.626  0.822 4.38 0.844  0.523 9.77
Symmetry 0.836  0.820 4.23 0.666  0.311 9.13

features which might have some degree of correlation with the target
(and, thus, unconstrained models could pick them) in the training set
(e.g. due to noise or biases), but do not have a predictive power on

unseed test samples.

A common benchmark for the accuracy of explanations is the ROAR
test [31]. We apply it to the saliency maps from all the explainability-
constrained models which are compared against the baseline (see the
first plot in 2b). To speed up the test, for each fraction of removed
features we train a model without regularization over the perturbed
train data for a total of 6 epochs. Thus, the curves in Fig. 2b are
obtained with different attributions ¢ but the retrained model is of the
same type for all of them. The most reliable explanation is the one
that most degrades the test accuracy for a given fraction of removed
features. We can see that, as expected, the degradation of accuracy over
the test set decreases monotonically for all models. The steepest curve

corresponds to the model (and, consequently, explainability constraint)
whose feature attributions are more precise and reliable according to
the ROAR score (see e.g. [31,65]). Baseline attributions are clearly
improved and, in particular, attributions from symmetry and fidelity
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Fig. 2. Test error (a, top row) and accuracy (b, bottom row) as a function of the rate of removed features or the amount of perturbation injected for different constraints (baseline,

GradReg, locality, smoothness, fidelity, consistency and symmetry) and metrics (MoRF, faithfulness, complexity, ROAR, Gaussian and block perturbations).
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GradReg

= T

ol
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Fig. 3. Saliency maps for some input images. One can notice that explainability-constrained models produce more interpretable attributions with respect to the noisy saliency from
the baseline. In the above images pixels coloured in blue correspond to zero or negative attributions while those in the red scale have positive attributions. We remind that the
higher the attributions the more important are the corresponding features in predicting the output, while features with zero or negative attributions are either inactive or push

the model towards a wrong class.
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Fig. 4. MoRF curves: (a) test error as a function of the rate of removed features when computing the post-hoc explanation with fidelity (left), locality (middle) or smoothness
(right) models; (b) test error as a function of the rate of removed features with explanations computed with kernel SHAP (left), gradcam (middle) or integrated gradients (right).
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Fig. 5. Saliency maps for some input images. One can notice that explainability-constrained models produce more interpretable attributions with respect to the noisy saliency

from the baseline.



M. Ronco and G. Camps-Valls

GradReg

Gradients

Consistency

Neurocomputing 562 (2023) 126884

moothness

- i

Symmety

Integrated Gradients

KernelSHAP

GradCAM

Fig. 6. Saliency maps for some one input image computed with four different xAI methods: Gradients, Integrated Gradients, Kernel SHAP, and GradCAM. Notice the differences
between the attributions of the models trained with different constraints for the explanations.

Table 2
Shallow CNNs.

MNIST

Fashion-MNIST

Conv 2D (5 x 5, 8 kernels)
Max-pooling (2 x 2)
Conv 2D (5 x 5, 16 kernels)

Conv 2D (3 x 3, 32 kernels)
Conv 2D (3 x 3, 64 kernels)
Max-pooling (2 x 2)

Max-pooling (2 x 2) Dense (32)
Dense (10) Dense (10)
Table 3

Test accuracy.

Constraint MNIST Fashion-MNIST
Baseline 98.7% 92.3%
GradReg 98.5% 90.3%
Locality 98.8% 92.0%
Smoothness 98.5% 89.3%
Fidelity 99.0% 91.6%
Consistency 98.7% 92.3%
Symmetry 98.5% 92.0%

obtain the highest score. It is important to stress that many state-of-
the-art XAl methods do not pass the ROAR test [31], while here we
obtained better results just with input gradients thanks to the fact that
they have been optimized at training time (see also Appendix A.2).

To prove the robustness of the explainability-constrained models
against distribution shifts, we inject either spurious square block of
random size (uniformly drawn between a minimum and a varying
maximum size) and intensity (middle plot in 2b) or Gaussian noise (last
plot in 2b) only in the test data without retraining. Here the higher the
test accuracy for a given amount of perturbation, the more robust is
the model. Ideally, one would like to have a model that retains the
same test accuracy regardless of the degree of corruption in the test
samples. While a similar behaviour is observed for all models when
the perturbation is given by square blocks with increasing size, the
smoothness property is crucial for retaining a good test accuracy under
Gaussian noise as already shown in [43].

Finally, we make a qualitative comparison between the saliency
maps obtained with different attribution priors in Fig. 3. Compared

to those obtained from the baseline model (second column in Fig. 3),
the gradient-based maps produced with explanation regularization are
much more precise and less noisy having non-zero values only in a few
localized regions. Regularized models assign zero importance scores to
background pixels, which do not contain any information, and this is
the case not only for the model trained with locality regularization (8)
but also for the other constraints that do not explicitly enforce a notion
of locality on the input gradients (see, in particular, the attributions
from symmetry in the last column). The optimized feature attribu-
tions are also more semantically meaningful and, interestingly, some
constraints identify similar patterns or, put in other words, more gen-
eralizable explanations (compare e.g. the saliency maps from locality,
fidelity and symmetry).

5. Conclusion

With the proliferation of methods for generating explanations, find-
ing ways to select the correct attributions has become increasingly
important. We presented a pragmatic framework for optimizing not
only the model accuracy but also its interpretability at training time.
We compared the saliency maps obtained from models with and with-
out attribution priors and showed that enforcing locality, fidelity and
symmetry allowed us to improve significantly the reliability of the
final explanations both qualitatively and quantitatively. The frame-
work we discussed is general and flexible enough to allow systematic
comparisons between different xAI methods and priors.

The optimization of explanations at training time comes with a
computational cost which depends on the specific type of prior, the xAI
method used to compute the attributions ¢ at each training step as well
as the DL architecture. Nonetheless, it has been shown in [44] that it is
possible to reduce the training time by restricting to a class of models
for which the attributions can be computed with only a single forward—
backward pass, such models need to be non-negatively homogeneous,
a property that for most of the known architectures can be achieved by
simply removing the bias term of each layer.

Follow-up studies could extend our methodology for comparing the
explanations by directly involving human judgement. Following the
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Table 4

MOoRF curves: AUC scores.
Constraint Grad locality Grad fidelity Grad smoothness KernelSHAP GradCAM IntGrad
Baseline 0.798 0.780 0.711 0.406 0.381 0.811
GradReg 0.747 0.749 0.665 0.355 0.306 0.734
Locality 0.831 0.791 0.732 0.462 0.188 0.736
Smoothness 0.754 0.755 0.685 0.370 0.330 0.770
Fidelity 0.811 0.824 0.749 0.429 0.395 0.744
Consistency 0.778 0.773 0.693 0.411 0.209 0.795
Symmetry 0.784 0.788 0.694 0.422 0.106 0.788
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Fig. 7. (a) MoRF curve for all models trained on the Fashion-MNIST dataset. See how the model with symmetry regularization is still able to significantly increase the AUC, while
an unsupervised locality penalty deteriorates its performance in this case. b) Fidelity, symmetry and gradient regularization produce more interpretable saliency maps with respect
to the noisy saliency from the baseline.
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Table 5

Metrics for saliency maps.
Constraint MoRF Faithfulness Complexity
Baseline 0.563 0.744 4.39
GradReg 0.604 0.837 4.26
Locality 0.307 0.665 4.41
Smoothness 0.587 0.830 4.35
Fidelity 0.597 0.760 4.40
Consistency 0.626 0.714 4.25
Symmetry 0.664 0.611 4.35

human-in-the-loop approach (see e.g. [66] and references therein), one
could design a user study and ask participants to vote for the most
explainable saliency maps for a group of instances. Such an experiment
would be costly and time consuming, taking into account that the num-
ber of people involved should be quite large in order to reduce as much
as possible the variability in responses due to subjective perceptions of
interpretability. Nonetheless, when going beyond toy dataset such as
MNIST, this kind of human validation would be of crucial importance
especially in the application of our analysis to medical datasets where
the evaluation even from a small group of experts would be needed to
integrate the results from the metrics.

Explainability-constrained training represents a promising direction
for solving the conflict between models’ performance and the trans-
parency of learned representations. In this regard, theoretical studies
are needed to clarify what is the best trade-off and understand model’s
generalization in terms of both accuracy and explanations. We are con-
fident that our work will encourage further research on novel properties
that explanations should hold, which can be learned via regularization
in order to advance the disciplines of algorithmic fairness, robustness
and trustworthy AI. We foresee applications in fields where domain-
knowledge is vast, e.g. health and natural sciences, and where it would
be interesting to compare attribution priors with commonly adopted
regularization terms such as sparsity or physics conservation laws. In
this context, it would also be interesting to combine our approach with
the human-in-the-loop framework for what regards both the definition
of attribution priors and the evaluation of the produced saliency maps.
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Appendix

A.1. Model architectures and hyperparameters

Both MNIST and Fashion-MNIST dataset were normalized between
0 and 1. To compare the different attribution priors, we trained shal-
low CNN architectures reaching nearly state-of-the-art performances
on both datasets (about 2% and 5% less accurate than benchmarks
respectively) but having relatively short training times depending on
the chosen penalty in the loss. All models were developed in PyTorch.
Details on the architectures are provided in Table 2. We use ReLU (x) =
max(0, x) activation functions and apply batch normalization after each
layer. In the Fashion-MNIST CNN we also emply Dropout with fraction
0.15 after the convolutional blocks and 0.25 after the first fully con-
nected layer. We tried both 60 and 30 as batch sizes. The optimization
is done with Adam where the learning rate is kept equal to 1073, All
experiments are performed with a single 8 GB GPU NVIDIA GeForce
RTX 2060.

The regularization parameters A are obtained through grid search in
the range [0.05, 1.5] for each constraint. Overall higher values for 4 are
used in the Fashion-MNIST. The accuracies on the test set are reported
in Table 3.

A.2. Additional results on MNIST

In Fig. 4 we show other MoRF curves obtained over the MNIST
dataset. First we show that also fidelity and locality explanations are
able to increase the AUC across all models with and without con-
strained losses. Then we obtain the MoRF by using different xAl meth-
ods, i.e.: Kernel SHAP, GradCAM, and Integrated Gradients. Both Kernel
SHAP and GradCAM provide less reliable saliency maps according
to MoRF. Remarkably, vanilla input-gradient explanations outperform
also integrated gradients when penalty terms for explanations are
optimized at training time (see again results for symmetry, locality
and fidelity in the main text). This suggests that guiding models’
explanations is more important that (or at least as important as) picking
a specific method for post-hoc explanations. See also Table 4.

More saliency maps for input samples are provided in Fig. 5 where
again we can see how explanations obtained with xAl-constrained
models are more interpretable also at a qualitative visual level (see
Fig. 6).

A.3. Experiments with Fashion-MNIST

Here we report the results obtained with the same regularization
terms but training a slightly deeper model (see Table 2) on the Fashion-
MNIST dataset. In this case symmetry and fidelity are still able to
improve the metrics for the explanations with respect to the uncon-
strained baseline, while less clear results are obtained with some of the
constraints. The scores are reported in Table 5. See Fig. 7.
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