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Abstract—Ground deformation measured from Interferometric
Synthetic Aperture Radar (InSAR) data is considered a sign of
volcanic unrest, statistically linked to a volcanic eruption. Recent
studies have shown the potential of using Sentinel-1 InSAR data
and supervised deep learning (DL) methods for the detection
of volcanic deformation signals, towards global volcanic hazard
mitigation. However, detection accuracy is compromised from
the lack of labelled data and class imbalance. To overcome this,
synthetic data are typically used for finetuning DL models pre-
trained on the ImageNet dataset. This approach suffers from
poor generalisation on real InSAR data. This letter proposes
the use of self-supervised contrastive learning to learn quality
visual representations hidden in unlabeled InSAR data. Our
approach, based on the SimCLR framework, provides a solution
that does not require a specialized architecture nor a large
labelled or synthetic dataset. We show that our self-supervised
pipeline achieves higher accuracy with respect to the state-of-
the-art methods, and shows excellent generalisation even for out-
of-distribution test data. Finally, we showcase the effectiveness
of our approach for detecting the unrest episodes preceding the
recent Icelandic Fagradalsfjall volcanic eruption.

Index Terms—deep learning, self-supervised, contrastive learn-
ing, SimCLR, volcano, InSAR, Fagradalsfjall eruption

I. INTRODUCTION

Globally, 800 million people live within 100 km of a
volcano [1f]. Improvements in forecasting volcanic activity
have been shown to reduce fatalities due to volcanic eruptions
[2]]. Hence, several volcano observatories are set-up globally,
including the Geohazard Supersites and Natural Laboratories
initiative. However, a significant proportion of the ~1,500
holocene volcanoes has no ground-based monitoring, although
the deformation at volcanoes is statistically linked to eruption
[3l], which can be detected prior to the event [4]].

Interferometric Synthetic Aperture Radar (InSAR) data
from the Sentinel-1, 6-day repeat-cycle, satellite allows the
systematic monitoring of volcanic unrest at a global scale.
Such abundance of InSAR data have the potential to enable
observatories to monitor volcanic activity without additional
costs. Fringes detected in wrapped interferograms over volca-
noes indicate the onset of deformation, usually due to magma
chamber fill-in at depth. Associating fringes with deformation
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is non-trivial; atmospheric signals may also give rise to such
fringes, which may lead to false positive identifications. Their
effect is also amplified in the presence of strong topography,
which is usually the case for volcanic domes.

Recent studies have proposed the use of supervised Deep
Learning (DL) architectures to automatically detect the pres-
ence of ground deformation triggered by volcanic unrest,
within single interferograms. Anantrasirichai et al. [S] were
the first ones to use DL on short-term wrapped interfer-
ograms to detect rapid deformation. They rely on heavy
data augmentation and employ a transfer learning strategy
using AlexNet Convolutional Neural Network (CNN) archi-
tecture, pre-trained on ImageNet [6]. Synthetically generated
interferograms, based on analytic forward models of magma
chambers (e.g. Mogi, dykes, sills), have also been used to
train the same network [7]], reaching 86% F1-score on real
data. Valade et al. [8] train a custom CNN architecture on
synthetic wrapped interferograms, but test it to only a few
real interferograms. A CNN workflow has also been proposed
to identify surface deformation associated with an earthquake
[9l], using synthetic wrapped and unwrapped interferograms.
They report an accuracy for their best model of 85%, tested
on 32 real InSAR interferograms, yet in principle earthquake
induced interferometric signals are denser and clearer than the
volcanic ones. Finally, volcanic deformation detection from
a single interferogram using a combination of synthetic and
augmented real InSAR data has been performed by Gaddes
et al. [10]. They apply a VGG-based model, while they split
the target class “deformation”, to two sub-classes: Sill/Point
and Dyke and report an overall accuracy of 83%.

A common issue encountered by all studies is the scarcity
of training data for the positive class, i.e. interferograms with
volcanic deformation. Hence, most works cope with class
imbalance via heavy data augmentation engineering and the
creation of positive class synthetic data for supervised learn-
ing. Supervised learning though requires big curated datasets
to work well. To counter this, researchers have used classical
architectures pretrained on large unrelated datasets. We argue
that transfer learning from computer vision tasks provide
less meaningful information for the task of volcanic activity
detection when compared to features learnt from related data.
Indeed the studies discussed above, report that they struggle
to generalise well for real, unseen InSAR data.



Recently, the AI community shifted its focus to re-
solve these shortcomings of supervised learning, towards
unsupervised/self-supervised training schemes. The goal is to
exploit the information hidden inside the data and produce
features without any human supervision that can generalize
well for different classification tasks. In remote sensing some
recent works highlight the value of these approaches [[L1][12].

In this letter, we propose a self-supervised, contrastive
learning framework based on SimCLR [13] to solve the
deformation/non-deformation binary classification problem,
using an unbalanced, real, wrapped InSAR dataset. We avoid
using unwrapped interferograms or time-series data in order to
have faster classification response, which is particularly useful
in volcano observatories for near real-time monitoring. Our
approach exploits the abundance of unlabelled InSAR data to
learn quality visual features, which can be used by a simple
linear supervised classifier for the detection task.

The contributions of our work are as follows:

e We are the first to introduce a self-supervised learning

framework for volcanic activity detection.

o We propose a training pipeline that does not rely on the
generation of massive augmented, synthetic or manually
annotated InSAR data.

o We demonstrate that training on a large unlabeled InSAR
dataset in a self-supervised manner provides more quality
features than using pre-trained models from ImageNet.

o Experimental results show that models trained with this
framework have the ability to generalize better, even
for InSAR data drawn from a different distribution with
respect to the training set.

o We provide the first generic feature learning model for
InSAR, which can be used for different downstream tasks.

II. CONTRASTIVE SELF-SUPERVISED LEARNING PIPELINE

Our approach is set-up as an instance discrimination task
where every image in the dataset belongs to its own class.
Our pipeline is a two step training process. First, it consists of
an encoder trained in a self-supervised manner, and second of
a fully connected layer attached on top of the encoder for the
supervised classification task. For the self-supervised training
we utilize the recently introduced SimCLR [13]] framework.
SimCLR learns representations by trying to maximize the
similarity of two augmented views of the same example in the
latent space. The main components of the adopted framework
are the following:

o A stochastic data augmentation module that creates two
different transformations of the same input wrapped in-
terferogram patch. For every patch = the augmentation
module creates two augmented views Z;,Z;. In our ex-
periments, we use Horizontal and Vertical Flips, Cutout,
Multiplicative Noise, Elastic Transformation, Gaussian
Blur and Gaussian Noise. Each view is generated from a
random combination of these augmentations.

« Anencoder f(-) for the representation extraction from the
augmented patches. There is no constraint on the choice
of the encoder. Following [13], we use the ResNet [14]
architecture. The representation is then extracted from the
output after the average pooling layer, h; = ResNet(Z;).

o A projection head g(-), that maps the encoder’s represen-
tation to the space where the contrastive loss is calculated.
We, like [13] use a multilayer perceptron (MLP) with
one hidden layer and a ReLU activation function. Thus,
zi = glhy) = WRo(WMh;) , where W' and W?
represent the weight matrices and o is the ReLU function.

o The contrastive loss estimation. Given a set {Z;} which

contains, among others, a positive pair of augmented
interferogram patches Z; and ;, the contrastive loss aims
to guide our algorithm to identify Z; in {Zj}r2; for a
given ;.

The training pipeline can be seen in Figure |1 and is as fol-
lows. From a batch of size N we create 2N samples using the
augmentation process defined above. The augmented InSAR
patches created from the same original patch serve as a positive
example and the rest 2(N-1) patches in the batch constitute the
negative examples. The process can be summarized with the
following graph: zj, ~<s Iy, EAGR hy; LION zF;, where T
is the set of augmentations. We define the similarity function
sim(x,y) as the cosine similarity between x and y. For each
minibatch we attempt to minimize the following contrastive
loss function:

6sim(zi ,25)]T

l;,j = —log ; ’ M
’ N Lppggesimzomn)/7

where 1, € {0,1} is 1 if k # ¢ and O otherwise and 7 is
a temperature parameter. 7 scales the input and expands the
range of values of the cosine similarity. We set 7 = 0.5 and
the final loss is calculated on all positive pairs in a mini batch.
Finally, using the encoder that was trained in a self-
supervised manner we proceed with the classification task, by
freezing the parameters of the encoder and attach a trainable
linear classifier on top. We propose an oversampling approach
for the supervised classification task, where we randomly
choose a class from which the next sample will be drawn.
For a batch size N, this process takes place N times. In this
approach one sample might be seen more than once in each
epoch, thus preventing the domination of the larger class.

III. EXPERIMENTS

this  sec-
repository:

All data and code presented in
tion are published at the project’s
(https://github.com/ngbountos/Deep CubeVolcano).

A. Datasets

We use only real data that come from two different sources,
which we symbolize with S1 and C1 (Table[l). S1 dataset was
provided by the authors of [S]] and [7]], and contains Sentinel-
1 wrapped InSAR patches from 16 volcanoes globally. The
S1 dataset is highly imbalanced, containing a large number
of negative examples but very few positive ones (~2%).
C1 was manually collected by us from the LiCSAR online
InSAR repository [15] over 5 volcanoes: Taal, Cerro Azul,
Fagradalsfjall, Etna and Ale Bagu, and is much more balanced.
We use only the S1 dataset for training our models, while we
create two different test datasets. The first one contains 64
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Fig. 1: The proposed pipeline. First, we use unlabeled InSAR data to learn feature representations with the SimCLR
self-supervised framework and then attach a linear classifier for the supervised training with a few labels.

TABLE I: Overview of the datasets used in this work. For
the self-supervised task, the positives and negatives of S1
are employed together without labels. C1 is used only for
evaluation.

Data Source Train Test Total
- Positive  Negative | Positive  Negative
S1 150 7386 32 32 7600
Cl - - 404 365 769

Deformation Patche;

¢ Non Deformation Patches

¢

Fig. 2: Sample interferogram patches from both data sources.
The first and second rows contain samples from S1 and Cl1
sources respectively. C1 dataset is diverse - from left-to-
right and for the deformation class: 1) Cerro Azul unfiltered,
interferometric phase only, 2) Etna descending interferogram,
Goldstein filtered, phased and amplitude overlay, and 3) Taal,
ascending interferogram, water masked interferometric phase,
Goldstein filtered.

balanced samples drawn from S1, and the entire C1 dataset
serves as a, second, evaluation dataset.

The two test sets SI1 and Cl1 are quite different. Figure [2]
shows examples of deformation and non-deformation samples
from both sources. C1 test dataset is highly diverse as we have
included 1) wrapped interferograms from both descending
and ascending viewing geometries, 2) unfiltered and Gold-
stein phase-filtered interferograms, and 3) pure phase-only
interferograms and interferograms where the phase is overlaid
with SAR amplitude. S1 dataset is much more harmonised
and therefore S1 and C1 are considered to be drawn from
distributions with different characteristics with respect to noise
level and visual features. Such challenging test samples are
used to evaluate the generalization performance of our self-
supervised approach.

B. Contrastive learning model performance

We evaluate the performance of the encoder trained with our
proposed self-supervised approach (Section [[) and compare it
to the pretrained features from ImageNet [6]. We experiment
with different scales of the ResNet architecture and utilize
the linear evaluation protocol, i.e. we freeze the encoder
parameters and fine-tune a simple linear classifier on top
of the network. The linear evaluation protocol is a standard
way to assess the quality of the learnt representations [16].
To speedup convergence for the self-supervised stage, we
initialize the weights of the encoder with the parameters
learnt from ImageNet. We then retrain all layers with the
self-supervised method for 200 epochs using an unlabelled
version of the S1 dataset. At the fine-tuning step we apply the
oversampling approach (Section [[I) to the labeled S1 dataset.
No oversampling is performed for the self-supervised stage,
as it assumes no class knowledge.

Table [ shows how ResNet architectures with different
capacities compare in the two different test setups. The models
we examine are ResNetl8, ResNet34 and ResNet50. It is
noteworthy that the results using the features learnt from the
contrastive learning framework were obtained after only 1 to 3
epochs of fine-tuning the linear classifier. We found that setting
the learning rate between 0.001 and 0.005 works best. On the
contrary, the networks that used the pre-trained encoder from
ImageNet required 75 epochs to converge. We set the learning
rate to 0.001. For the fine-tuning step we use a batch size
of 112. At the pre-training stage, we use the largest possible
batch size depending on the architecture. We set the batch size
to 32 for ResNet50 and 112 for ResNet18 and ResNet34.

We conduct two additional experiments using ResNet50, our
best performing backbone encoder. First, we train SimCLR
from scratch using random initialization for 300 epochs to
show that the performance gain comes from self-supervised
training on InSAR data alone. We publish this model on the
project’s repository. Second, we test MoCo [16]], a different
self-supervised approach to show that performance gain can
be achieved from different self-supervised methods as well.

Additionally, we compare our models with the state-of-the-
art - all published methods use supervised approaches. We
train AlexNet’s and VGG16’s final layer for 50 epochs, while
keeping the rest of the layers freezed, with the ImageNet pre-
trained weights. We also examine three more methods, popular
in computer vision i.e Vision Transformer (ViT), DenseNet121



TABLE II: Experiment results on both test sets. ACC, FP, TP, FN, TN, F1, P and R, stand for overall accuracy, false positives,
true positives, false negatives, true negatives, fl-score, Precision and Recall, respectively.

S1 Cl

Model ACC FP TP FEN TN F1 P R ACC FP TP FN 1IN F1 p R
ResNet18-ImageNet 81% 12 32 0 20 0.841  0.727 1 64% 0 132 272 365 0.491 1 0.326
ResNet18-SimCLR 84% 9 31 1 23 0.860 0.775 0.968 | 70% 0 178 226 365 0.611 1 0.440
ResNet34-ImageNet 82% 10 31 1 22 0.848  0.756 0.968 | 70% 3 181 223 362 0.615 0983 0.448
ResNet34-SimCLR 82% 11 32 0 21 0.853  0.744 1 91% 4 339 65 361 0907 0988 0.839
ResNet50-ImageNet 82% 10 31 1 22 0.848  0.756 0.968 | 63% 1 125 279 364 0471 0992 0.309
ResNet50-SimCLR 85% 8 31 1 24 0.872 0.794 0968 | 91% 10 347 57 355 0911 0971 0.858
ResNet50-SimCLR-Scratch ~ 85% 8 31 1 24 0872  0.794 0.968 | 86% 2 306 98 363 0.859 0993 0.757
ResNet50-Moco 9% 13 32 0 19 0,831 0.711 1 82% 0 267 137 365 0.795 1 0.660
AlexNet 82% 9 30 2 23 0.844  0.769 0937 | 2% 49 244 160 316 0.699 0.832 0.603
VGG16 85% 6 29 3 26 0.865 0.828 0906 | 64% 39 171 233 326 0.556 0.814 0423
ViT-ImageNet 90% 3 29 3 29 0906 0906 0.906 | 59% 5 96 308 360 0343 0950 0.343
DenseNet121-ImageNet 82% 9 30 2 23 0.844  0.769 0937 | 54% 0 53 351 365 0.231 1 0.131
InceptionV4-ImageNet 92% 4 31 1 28 0924 0.885 0968 | 69% 23 196 208 342 0.628 0.894 0.485

and Inception-V4 (Table[Il). We use oversampling and random
rotation augmentation for all methods.

C. Discussion

The results summarised at Table [[Il show that the models
trained with the SimCLR method performed better or compa-
rable with the respective ones pre-trained with ImageNet, for
each test dataset and for each ResNet encoder architecture.
This is significant; it highlights the fact that training in a
self-supervised approach with 7,536 unlabeled samples only
(Table[l), drawn from a distribution of wrapped interferograms,
provides better quality features than using models pre-trained
in a supervised way from ~1.5 million ImageNet images.
It is even more impressive that our proposed self-supervised
learning technique produced models that required only 1-3
epochs of finetuning to achieve these results, versus the 75
epochs needed for the Imagenet pre-trained model, for the
same task.

The major enhancement in our approach however, shows
itself at the C1 dataset. The high quality of the learnt InSAR
data representations is clearer in the second half of Table
that summarises the experiments on the C1 test dataset, which
is drawn from a distribution with different characteristics with
respect to the training set (Section [[TI-A). While for S1 dataset
the best ImageNet and SimCLR models provide 92% and 85%
overall accuracy respectively, for C1 dataset the corresponding
accuracies are 70% and 91%. The supervised ImageNet model
struggles to resolve the required features from the new InSAR
data distribution and overall, this large performance gap un-
derlines the ability of the self-supervised model to generalize
better. To further validate this we construct 731 synthetic
interferograms using SylnterferoPy [10] over a collection of
subaerial volcanoes. Deformation patterns include those due
to dykes, sills, and Mogi sources. Our ResNet50-SimCLR
model reaches 88.9%, while ResNet50-ImageNet 69.9% and
InceptionV4-ImageNet 66.2% true positive rate respectively.
Again the self-supervised learnt features generalize better.

The last five rows of Table [lI] provide a comparison be-
tween ResNet50-SimCLR, our best performing encoder, and

architectures on the same task, proposed by the state-of-
the-art studies of Section [l and other popular methods used
in computer vision. Again, the proposed method generalizes
better, as seen in the C1 part of the table. On S1 all models
perform well with Inception-V4 achieving the best accuracy.
On C1, our method reaches 91% overall accuracy and 0.911
F1 score based on the linear evaluation protocol.

In addition, our pipeline did not make use of massive
augmented, or synthetically generated datasets, as opposed to
the state-of-the-art approaches (Section [l). Equally important,
the achieved performance has been reached with a training set
containing just 150 manually annotated InSAR patches with
deformations. The potential from exploiting large unlabelled
InSAR datasets in a self-supervised approach is at least
promising. Given the recent availability of online reposito-
ries, such as LiCSAR used in this work, that contain and
produce hundreds of interferograms over volcanoes globally,
the deployment of this pipeline on a large distributed system,
increasing the effective batch size is a natural next step. In fact,
greater computational resources lead to better models. Using
larger batch sizes, training longer and optimizing the stochastic
augmentations used for SImCLR, improves the performance of
contrastive learning [13]]. Furthermore, our analysis showed
that Elastic Transformation is especially important for data
augmentation, potentially due to the nature of fringe patterns
within InSAR data, either these patterns are related to de-
formation, atmospheric disturbances, topographical errors, or
orbital ramps, etc. In our work we also use the maximum
batch size possible depending on the model’s architecture and
available memory.

IV. FAGRADALSFJALL VOLCANIC ERUPTION CASE STUDY

We apply our approach on Fagradalsfjall volcano at Reyk-
janes Peninsula, Iceland. We focus on two recent unrest
episodes. Triggered by dyke intrusions, the inflation episodes
took place in mid-January 2020, and early March 2021. The
latter episode led to an effusive eruption, on 19 March 2021, —
the first known eruption on the peninsula in about 800 years.

In order to simulate a real, working product, we merge all
our datasets and collect some extra InSAR patches to finetune
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Fig. 3: Visualization of ResNet50 activations on Fagradalsfjall volcano. Pink represents the area that affected the network’s
decision the most. Both unrest episodes are shown in chronological order. Prg;,crr and Expert are the predictions made by
our method and the InSAR expert, respectively (1=positive, O=negative).

our models and produce a quality classifier. We unfreeze the
fully connected layer as well as layer 3 and 4 of the ResNet50
SimCLR encoder. We train for 2 epochs and reduce the
learning rate to 0.0005. In total the new training set contains
614 deformation and 7872 non deformation patches. We feed
the network with two time-series of wrapped interferograms,
one for each unrest event.

Figure 3] presents the model classification decision for each
single interferogram vis-a-vis the decision from an InSAR
expert. In addition, the figure shows the areas of the patch
that affect the most the decisions of the final, fully connected
layer. This visualization was produced using the Class Ac-
tivation Mapping (CAM) technique [17)]. There are two key
observations drawn from this use case. First, the model trained
with the proposed method focuses on the correct patterns
(the fringes) of the interferogram patch. Second, the pipeline
correctly captures the start of both unrest episodes, triggering
a potential alarm.

V. CONCLUSION

In this work, we implemented a pipeline to train binary
classification models for volcanic unrest detection utilizing
unlabelled InSAR datasets, thus without the the need to create
huge labelled datasets or generate error-prone synthetic data.
We provided proof for the superiority of the self-supervised
learnt features when compared to models pre-trained from
ImageNet, and the ability of our approach to generalise effec-
tively even for out-of-distribution test samples. Our approach
outperforms state-of-the-art supervised methods.

Volcanic unrest early warning is of major importance for
civil protection authorities and volcano observatories. Setting-
up alert mechanisms enhances response effectiveness and
allows for scientists to deploy critical in-situ monitoring
equipment to assess more accurately volcanic hazard. We
highlighted that this could be implemented in the case of the
2020-2021 Fagradalsfjall volcano unrest and eruption.

Finally, we believe that there is much potential in our
self-supervised approach, given the abundance of InSAR data
produced regularly by the Sentinel-1 missions. Exploiting
the information they contain in a self-supervised way, while
labelling only a small subset paves the way towards a global
volcanic unrest detection system, but may also be applicable
to a plethora of other remote sensing applications and tasks.
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