
1.  Introduction
Increasing studies based on model ensembles reveal that large uncertainties remain in modeling the global 
carbon cycle and ecosystem responses to environmental changes (Baldocchi et al., 2016; Bloom et al., 2016; Piao 
et al., 2020). The uncertainties are mainly due to various limitations in model structures, driver data, parameters 

Abstract  In a model simulating dynamics of a system, parameters can represent system sensitivities and 
unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) 
model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose 
a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from 
plant-functional-type (PFT)-dependent parameterizations. SPIE refers to predicting model parameters using 
an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, 
vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network 
was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE 
with 11 typical parameter extrapolating methods, including PFT- and climate-specific parameterizations, global 
and PFT-based parameter optimization, site-similarity, and regression approaches. All methods were assessed 
using Nash-Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared 
error, and contrasted with site-specific calibrations. Ten-fold cross-validated results showed that SPIE had the 
best performance across sites, various temporal scales and assessing metrics. Taking site-level calibrations as 
a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches 
showed lower NSE. The Shapley value, layer-wise relevance and partial dependence showed that vegetation 
features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong 
limitations observed in many standard parameterization methods. We argue that expanding SPIE to other 
models overcomes current limits and serves as an entry point to investigate the robustness and generalization of 
different models.

Plain Language Summary  Parameters can represent ecosystem properties and sensitivities of 
ecosystem processes to environmental changes, affecting model accuracy and output uncertainties. Therefore 
determining parameters is of great importance for applying models. Current ecosystem-level models mostly 
determine parameters according to biomes. For example, light use efficiency (LUE) models, a typical tool to 
estimate gross primary productivity (GPP), use plant-functional-type (PFT)-specific parameters. However, 
PFT-specific parameters cannot represent the spatial variance of GPP sensitivities to environmental conditions 
within PFT and introduce significant estimation errors. To overcome these issues, we propose a Simultaneous 
Parameter Inversion and Extrapolation method (SPIE). Taking an LUE model as an example, we estimated 
model parameters using SPIE based on the input features representing vegetation, climate and soil properties 
at 196 observational sites. We compared SPIE with 11 other parameter extrapolating methods and all of these 
methods with site-specific calibrations based on full-time-series observed GPP. The results were validated and 
showed that SPIE was the best method to extrapolate parameters across various temporal and spatial scales. 
According to the importance of input features, vegetation features, bioclimatic variables, soil properties and 
some PFTs are dominating spatial changes of parameters. Overall, SPIE is a robust method that overcomes 
strong limitations in many standard parameter extrapolating methods.
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(Huntzinger et al., 2017; Medlyn et al., 2005; Zheng et al., 2018) and a lack of ecological considerations as addi-
tional constraints (Bloom & Williams, 2015). Although model parameters contribute to considerable uncertain-
ties, most global vegetation models are parameterized using fixed, biome- or plant functional type (PFT)- based 
values, which alone cannot capture the spatial variability of carbon assimilation processes (Bloom et al., 2016), 
arguing for considering aspects related to ecosystem development stage and biodiversity. The fixed and PFT-based 
parameterization are also widely used and introduced uncertainties in gross primary productivity (GPP) models 
(Groenendijk et al., 2011; Ryu et al., 2019), including light use efficiency (LUE) models, leaf-scale-process-based 
models, machine-learning and sun-induced fluorescence models (Frankenberg et  al.,  2011; Jung et  al., 2011; 
Running et al., 2004; Tian et al., 2020; Zhang et al., 2012). A more robust and physically intuitive parameteriza-
tion method is desired for constraining the global GPP estimation.

LUE models are typical approaches for the estimation of GPP at large global scales (Mahadevan et al., 2008; 
Potter et al., 1993; Running et al., 2004; Tian et al., 2020; Yuan et al., 2007). These models incorporate the knowl-
edge of environmental constraints to the originally proposed empirical LUE model, Monteith's model (1972), 
having the advantages of high efficiency and algorithmic transparency compared to leaf-scale-process-based 
models and machine-learning-based models, respectively.

The first global GPP product based on the MODIS LUE algorithm (Running et  al.,  2004) proposed a set of 
PFT-dependent parameters. Later, other published global LUE models inherited the PFT-based parameterization 
method or incorporated parameters directly extracted from literature (He et al., 2013; Mahadevan et al., 2008; 
Xiao et al., 2004; Xie & Li, 2020). The PFT-based approach is not exclusive to LUE models but is also commonly 
used in dynamic global vegetation models and the land surface schemes of global Earth system models support-
ing IPCC reports (Ciais et  al.,  2019; Masson-Delmotte et  al.,  2021; T. Stocker,  2014; Wenzel et  al.,  2014). 
However, applying parameterizations in locations or regions, which have not been previously used or evaluated 
against observations, might easily lead to naïve conclusions about model structure robustness and/or parame-
ter generalization. To overcome this limitation, LUE models usually calibrate parameters within their physical 
ranges to minimize the mismatch between the modeled and the observational GPP (Carvalhais et al., 2008; Horn 
& Schulz, 2011a; Mäkelä et al., 2008; Yan et al., 2017; Zhou et al., 2016), that is, the GPP estimated from eddy 
covariance (EC) carbon flux. This method is supported by the availability of EC flux towers, given the need for 
parameter generalization limited for the global domain. To parameterize the Carnegie-Ames-Stanford approach 
(CASA) model in locations without EC observations, Carvalhais et al. (2010) considered in situ parameteriza-
tions from EC sites with the same PFT and similar climate and vegetation features. An alternative approach is to 
apply globally fixed parameters from literature (Mengoli et al., 2022; H. Wang et al., 2017) or globally optimized 
parameters (B. D. Stocker et al., 2020; Yuan et al., 2019). Another option to extrapolate parameters is based 
on clustering approaches. The clustering approaches denote using the average site-level optimized parameters 
per PFT (Guan et al., 2022; Yuan et al., 2014a; Zhou et al., 2016) or PFT-specific optimized parameters (Tian 
et al., 2020; Zheng et al., 2020). Yuan et al. (2014b) showed using six different LUE models that the modeled 
GPP using globally optimized parameters was not significantly different from that using PFT-specific optimized 
parameters. However, it has been illustrated that at least parameter variations between PFTs need to be considered 
to reach confident model performances (Tian et al., 2020). In general, most studies did not account for parameter 
variances within PFT, despite assuming that LUE model parameters are related to characteristics of the vegetation 
and the environment.

In some studies, the drivers for spatial changes of model parameters were analyzed based on site-level calibrated 
parameters. For example, Horn and Schulz  (2011b) found that their LUE model parameters, which represent 
the maximum LUE and the sensitivity of GPP to temperature and soil moisture, varied across climate zones 
and biomes and can be predicted using vegetation and environmental properties. The relationship between 
parameters and plant traits also existed in process-based GPP models (Peaucelle et al., 2019). Moreover, Luo 
and Schuur (2020) claimed that model parameters, which can represent both the evolving ecosystem properties 
and the unresolved ecosystem processes, should be determined according to our knowledge about the changing 
ecosystem properties. All these studies confirmed the control of vegetation attributes and environmental features 
on model parameters, which represents GPP sensitivities. These findings inspire the possible next generation of 
parameterization methods based on the physical connection between model parameters and ecosystem properties.

In this study, we aim to propose a new model parameterization method (or parameter extrapolation method) 
that explicitly accommodates the contribution of PFT as well as other vegetation features and environmental 
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conditions to parameter spatial variability. We allow the spatial variation of parameters, indicating GPP sensi-
tivities to environmental forcings, to be learned from a set of ecosystem properties. To test the approach, we 
compared 12 different parameterization methods (see details in Section 2.2) based on an exemplified LUE model 
with appropriate environmental drivers and sensitivity functional forms selected from an ensemble of 5600 LUE 
models (Bao et al., 2022). These parameterization methods were assessed according to the accuracy of the simu-
lated GPP (GPPsim) across different time scales at the site level, per PFT, per climate type and globally (see 
Section 2.3). The importance of drivers for model parameters was evaluated using three different methods (see 
Section 2.4).

2.  Materials and Methods
2.1.  Light Use Efficiency Model

LUE models define GPP as a product between photosynthetically active radiation (PAR), the fraction of absorbed 
photosynthetically active radiation (FAPAR) and the maximum LUE (εmax), regulated by environmental sensitivity 
functions. The environmental drivers and sensitivity functional forms, representing the responses from the photo-
synthesis processes, differ across LUE models and can affect the model’s performance. To minimize  the selection 
effect of environmental drivers and sensitivity functions, we select a LUE model based on Bao et al. (2022). The 
study evaluated a large set of LUE models with various combinations of drivers and functional forms against GPP 
observations across various PFTs and climate types. The selected model was shown to be the best one compared 
with those LUE models with different drivers or sensitivity functional forms. In summary, the LUE model consid-
ers the impacts of temperature (T), vapor pressure deficit (VPD), atmospheric CO2 concentration (ca), soil mois-
ture (W), light intensity (L) and the cloudiness index on GPP dynamics (see Equations 1–8, and Bao et al. (2022)).

GPP = PAR ⋅ FAPAR ⋅ ε𝐦𝐦𝐦𝐦𝐦𝐦 ⋅ fT ⋅ fVPD ⋅ fW ⋅ fL ⋅ fCI� (1)

f𝐓𝐓 =
2𝑒𝑒−(𝑇𝑇𝑓𝑓−𝐓𝐓opt)∕𝐤𝐤𝐓𝐓

1 + 𝑒𝑒(−(𝑇𝑇𝑓𝑓−𝐓𝐓opt)∕𝐤𝐤𝐓𝐓)
2

� (2)

fVPD = 𝑒𝑒
𝜿𝜿

(

𝐂𝐂
𝐚𝐚𝐚𝐚

𝑐𝑐𝑎𝑎

)𝐂𝐂
𝜿𝜿

VPD

(

1 +
𝑐𝑐𝑎𝑎 − 𝐂𝐂𝐚𝐚𝐚𝐚

𝑐𝑐𝑎𝑎 − 𝐂𝐂𝐚𝐚𝐚𝐚 + 𝐂𝐂𝐦𝐦

)

� (3)

fW =
1

1 + 𝑒𝑒𝐤𝐤𝐖𝐖(𝐖𝐖𝐟𝐟
−𝐖𝐖

𝐈𝐈)
� (4)

fL = 1
1 + � ⋅ APAR� (5)

fCI = C𝐈𝐈
𝝁𝝁� (6)

𝑇𝑇𝑓𝑓 (𝑡𝑡) = (1 − 𝜶𝜶𝐓𝐓) ⋅ 𝑇𝑇 (𝑡𝑡) + 𝜶𝜶𝐓𝐓 ⋅ 𝑇𝑇𝑓𝑓 (𝑡𝑡 − 1)� (7)

𝑊𝑊𝑓𝑓 (𝑡𝑡) = (1 − 𝜶𝜶𝐖𝐖) ⋅𝑊𝑊 (𝑡𝑡) + 𝜶𝜶𝐖𝐖 ⋅𝑊𝑊𝑓𝑓 (𝑡𝑡 − 1)� (8)

The LUE model includes 13 parameters in total (in bold). All sensitivity functions (i.e., fT, fVPD, fW, fL, and 
fCI) are scaled from zero to one, representing from strong to no constraints. The physical meanings and units of 
the parameters and references of these sensitivity functions are summarized in Table 1.

The sensitivity function of VPD (fVPD) includes the effect of both VPD and ca, which jointly control the leaf 
internal CO2 concentration. The pure CO2 fertilization effect is described only by the right part of fVPD (i.e., 
the sum of one and ca function). The product of PAR and FAPAR, that is, the absorbed photosynthetically active 
radiation (APAR), is the estimate of the light energy intercepted by the vegetation canopy, and thus was used 
as the light intensity input of the sensitivity function of L (fL). The T and W were temporally filtered using lag 
parameters, αT and αW, at boreal and arid regions, respectively, according to Horn and Schulz (2011a).

2.1.1.  Forcing Data and Parameter Calibration

The forcing data for the LUE model was collected at 196 EC sites (listed in Table S1 of the Supporting Infor-
mation S1) from FLUXNET (www.fluxnet.org). The detailed sources and algorithms of the forcing data are 
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summarized in Table S2 of Supporting Information S1. The GPP estimated from the observed net ecosystem 
exchange at EC sites (GPPobs) were also collected to calibrate parameters and evaluate parameterization methods.

In the parameter calibration process, we added constraints on GPP simulation errors and sensitivity functions 
(e.g., fT) following the concept of ecological and dynamic constraints (see details in Text S1 of the Supporting 
Information S1). As a derivative-free global searching algorithm, CMAES (Hansen & Kern, 2004), was used 
to search the optimal parameters in its physical range according to the full-time series of GPPobs. We assumed 
that the simulated GPP using the calibrated parameters (GPPcalib) can reach the model potential (i.e., the highest 
model performance). Thus, the performance of the site-level calibrations (“site-calib”) was set as the benchmark 
for other parameterization methods in cross-validation (will be introduced in Section 2.2).

2.1.2.  Input Features of Ecosystem Properties for Predicting Model Parameters

To extrapolate the parameters across various sites and in the future to the global scale, we collect mainly the vari-
ables that can represent the ecosystem properties available at both local (i.e., site-level) and global scales. These 
variables include the PFT, climate classification types (Clim; Rubel et al., 2017), 19 bioclimatic variables (BIO1-
19, classified as “BioClim”; Xu & Hutchinson, 2011), two aridity features (AI1-2, classified as “BioClim”), 11 
vegetation index features (VIF1-11, represented by “VIF”), atmospheric Nitrogen and Phosphorus deposition 
(NdepNHX, NdepNOY and Pdep, summarized as “NPdep”; R. Wang et al., 2017) and 17 soil properties (clas-
sified as “Soil”; Poggio et al., 2021). In other words, we used six classes of input features which are shorted 
to BioClim, Clim, NPdep, PFT, Soil and VIF. The details of the input features are summarized in Table S3 of 
Supporting Information S1.

The categorical variables (PFT and climate types) were converted to one or zero to indicate whether the target 
location belongs to a specific type or not. All non-categorical variables were normalized by subtracting the 
mean of each feature and dividing by the standard deviation (Equation 9). The original and normalized features 
are represented by var and varnor. The mean and standard deviation per feature are represented by mean and std, 
respectively.

varnor =
var − mean

std
� (9)

2.2.  Parameterization Methods

We extrapolate the parameters based on a ten-fold cross-validation strategy using the collected input features. 
Namely, the samples, referring to the EC sites, were divided into 10 groups randomly (see the group number of 

Parameters Meanings Range Units References

εmax Maximum light use efficiency 0.1-7.0 gC MJ −1 Running et al. (2004)

Topt Optimal temperature 5–35 °C Horn and 
Schulz (2011a)kT Sensitivity to temperature changes 1–20 –

κ Sensitivity to vapor pressure deficit changes −10 −1 to −10 −4 kPa −1 Mäkelä et al. (2008)

Ca0 Minimum optimal atmospheric CO2 concentration 340–390 ppm Kalliokoski 
et al. (2018)Cκ Sensitivity to atmospheric CO2 concentration changes 0–10 –

Cm CO2 fertilization intensity indicator 100–4,000 ppm

kW Sensitivity to soil moisture changes −30 to −5 – Horn and 
Schulz (2011a)WI Optimal soil moisture 0.01–0.99 cm cm −1

γ Light saturation curvature indicator 0–1 MJ −1 m 2 d Mäkelä et al. (2008)

μ Sensitivity to cloudiness index changes 10 −3–1 – Bao et al. (2022)

αT Lag parameter for temperature effect 0.0–0.9 – Horn and 
Schulz (2011a)αW Lag parameter for soil moisture effect 0.0–0.9 –

Table 1 
List of Light Use Efficiency Model Parameters
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each site in Table S1 of the Supporting Information S1). We trained the parameterization models using nine of 
10 groups and validated the result using the one left, and repeated 10 times until we got validated results from all 
sites. All PFT and climate classification types (11 PFT and 14 climate classification types in total, see Table S1 
in Supporting Information S1) were included in each training data set.

The 12 parameterization methods can be divided into six groups, that is, univariate clustering, similarity-based, 
optimization-based, regression-based, our hybrid approach based on a neural network and globally fixed methods 
(see details in Sections 2.2.1–2.2.6).

2.2.1.  Univariate Clustering Methods (“PFTmean”, “Climmean”, “PFTmed”, and “Climmed”)

In regions without observational data, the parameters were determined by the arithmetic mean from the calibrated 
parameters at the sites with the same PFT (Guan et al., 2022; Yuan et al., 2014b; Zhou et al., 2016). Here we 
tested the methods using the mean and median parameters per PFT and climate type.
�“PFTmean”: means for calibrated parameter vectors per PFT;
�“Climmean”: means for calibrated parameter vectors per main climate type;
�“PFTmed”: medians for calibrated parameter vectors per PFT;
�“Climmed”: medians for calibrated parameter vectors per main climate type.

2.2.2.  Similarity-Based Method (“Sitesim”)

The site similarity is defined by Carvalhais et al. (2010) which measures the similarity (D) of the climate and 
vegetation features between site i and site j as in Equation 10:

𝐷𝐷𝑖𝑖𝑖𝑖𝑖 = 1 −

∑𝑁𝑁

𝑛𝑛=1
(𝑽𝑽 𝑖𝑖𝑖𝑖𝑖 − 𝑽𝑽 𝑗𝑗𝑗𝑗𝑗)

2

∑𝑁𝑁

𝑛𝑛=1

(

𝑽𝑽 𝑖𝑖𝑖𝑖𝑖 − 𝑽𝑽 𝒊𝒊

)2� (10)

Here, Vi is a vector including the normalized daily mean of the air temperature, precipitation (in logarithm), global 
radiation and LANDSAT-based normalized difference vegetation index (NDVI, see data source and processing 
method in Table S2 of the Supporting Information S1) between 1986 and 2015 at site i. N is the vector length 
(=366 × 4) and 𝐴𝐴 𝑉𝑉𝑖𝑖 refers to the mean of Vi.

To determine the parameters of a target location, we calculated D for each training site within the same PFT as 
the target location. The parameter vector at the site with the maximum D was used.

�“Sitesim”: parameter vectors for each site from the most similar site.

2.2.3.  Optimization-Based Methods (“OPT-All” and “OPT-PFT”)

The parameters can be optimized across all sites or at sites per PFT (Yuan et al., 2014a). Here we adopted the 
same algorithm, CMAES, and the same cost functions as the site-specific calibration method (see Text S1 in 
Supporting Information S1).
�“OPT-All”: a parameter vector optimized using all sites in the training data set (Yuan et al., 2014a).
�“OPT-PFT”: parameter vectors per PFT optimized using the sites within the same PFT in the training data set 

(Kuppel et al., 2012; Tian et al., 2020).

2.2.4.  Regression-Based Methods (“sRF”, “mRF”, “mNN”)

To test the assumption that calibrated parameters are determined by ecosystem properties, here we predict the 
calibrated parameters using the normalized features based on different regression methods.
�“sRF”: parameter vectors per site of which each parameter was predicted independently based on the single-output 

random forest (trees number = 100; Breiman, 2001).
�“mRF”: parameter vectors per site predicted simultaneously based on the multi-output random forest (trees 

number = 100; Pedregosa et al., 2011).
�“mNN”: parameter vectors per site predicted simultaneously based on the multi-layer perceptron neural network 

(hidden layers number = 2, neurons number = 16; Gardner & Dorling, 1998; McCulloch & Pitts, 1943).

2.2.5.  Simultaneous Parameter Inversion and Extrapolation Based on Ecosystem Properties (“SPIE”)

Models can suffer from equifinality problems, namely different parameter vectors can generate similar model 
performance. Consequently, the calibrated parameters may not represent the true parameters to simulate GPP, 
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which reflect the GPP sensitivities controlled by the environmental properties. Here we additionally test the 
assumption that the predicted parameter vector based on ecosystem properties, which might differ from the 
calibrated parameter vector, can simulate GPP with good accuracy. Instead of directly predicting parameters 
constraining by calibrated or literature-referenced values, we applied the neural network to predict the parameters 
of a LUE model which is constrained by GPPobs. The flowchart for this method is shown in Figure 1.

The sites were split into 10 groups according to the ten-fold cross-validation strategy to ensure robustness eval-
uation. Each training group includes all kinds of PFTs and climate types. For each group of training sites, the 
neural network takes the normalized site-level input features (Table S3 in Supporting Information S1) to predict 
simultaneously the individual site-level parameter vector (Table 1) for the LUE model to estimate GPP per site. 
GPPsim is assessed against GPPobs based on a custom cost function (see the equation of “cfNN” in Text S2 of the 
Supporting Information S1). Further, parts of the cost function are the constraints of the sensitivity functions (see 
the equations of “cf3” and “cf4” in Text S1 of the Supporting Information S1). To optimize the neural network, we 
calculate the gradient of the cost function to each parameter and backpropagate the gradient to the weight and bias 
terms of each hidden layer with the gradient descent algorithm. Afterwards, the weight and bias of each neuron 
are optimized using the ADAM algorithm (Kingma & Ba, 2014). Either if the number of epochs reaches 2 × 10 3 
or the cost function is below a defined threshold (ε = 10 −2), the optimization process stops. The hyperparameter 
of the neural network was tuned using a grid-searching approach (not shown here) which resulted in the following 

Figure 1.  Flowchart of the SPIE approach. We rely on the learning of a neural network, that outputs parameter vectors per 
site, contingent on site-level input features (introduced in Section 2.1.2), and constrained by observation-based gross primary 
productivity fluxes and sensitivity functions (see the cost function definitions in Text S2 in Supporting Information S1). The 
training process stops once the tolerance value for the cost is passed (ε = 10 −2) or a maximum number of epochs are reached 
(Ne = 2 × 10 3).
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values: learning rate = 10 −3, L2 regularization coefficient = 10 −4, mini-batch size = 32, neurons per layer = 16 
and hidden layers = 3. We apply the dropout strategy to the input and hidden layers, meaning that the neural 
network randomly deactivates a certain number of neurons in each batch. This leads to more robust predictions 
due to the avoidance of the overfitting problem (Srivastava et al., 2014). The output from the full pipeline is the 
trained neural network, which is then used to predict the parameter vector per site in test data sets. Finally, the 
LUE model with the predicted parameters is forced to simulate GPP and sensitivity functions (fT, fVPD, fW, fL, 
and fCI).

�“SPIE”: parameter vectors per site predicted based on ecosystem properties and constrained by both GPP 
errors and sensitivity functions of the LUE model.

2.2.6.  Globally Fixed Method (“P-Model”)

The P-model (B. D. Stocker et al., 2020; H. Wang et al., 2017) is derived based on Farquhar et al. (1980) and 
Fick's law together with an optimality theory (Prentice et al., 2014). All of its parameters are extracted from liter-
ature and upscaled from leaf-scale processes, therefore fixed globally. Mengoli et al. (2022) improved P-model 
from the original version by adding an acclimation process to the maximum rate of Rubisco activity and maxi-
mum rate of electron transport. Here we ran the Mengoli model based on daily data (introduced in Section 2.1.1). 
The P-model parameters were kept the same (acclimation window size  =  15, running-mean approach based 
on daily data; Mengoli et al., 2022). The model outputs, GPP, were assessed against observations. The model 
performance was compared with the LUE model using other parameterization methods (Sections 2.2.1–2.2.5). 
It is emphasized here that P-model is different from the LUE model used in Sections 2.2.1–2.2.5 and that the 
acclimation process is only involved in the P-model.

�“P-model”: literature values which are applied globally.

2.3.  Statistical Analysis for Parameterized Results

All the parameterization methods were assessed according to the GPP accuracy measured by Nash-Sutcliffe 
model efficiency (NSE, (−∞,1]; NSE = 1 indicates a perfect model), determination coefficient (R 2, [0,1]; R 2 = 1 
indicates a perfect model) and normalized root mean squared error (NRMSE, [0,∞); NRMSE = 0 indicates a 
perfect model) which is equal to the root mean squared error divided by the mean observational variable (e.g., 
GPPobs). Only good-quality data were used to calculate NSE, R 2, and NRMSE. Here the good-quality data refers 
to the input vector of which the quality assessment flags (see “QA” and “QC” in Table S2 of the Supporting 
Information S1) are all higher than 0.8, including quality assessment flags of all meteorological inputs, vegetation 
index and GPPobs. When aggregated to longer time scales, the good quality data means the average quality flags 
are all higher than 0.7 at the weekly and monthly scales, and 0.5 at the yearly scale. Besides, predicted parameters 
were compared to calibrated parameters to test if the model equifinality problem exists.

2.3.1.  Site-Level Temporal GPP Assessment

We forced the LUE model at the daily scale and got the daily GPPsim as a result. The weekly, monthly and yearly 
GPPsim and GPPobs were calculated based on the mean daily GPPsim and GPPobs, respectively. These time series of 
site-level GPP at different time scales were evaluated using NSE, R 2, and NRMSE. The vectors of NSE, R 2, and 
NRMSE were compared across all sites, per PFT and climate types.

2.3.2.  Spatial Variability of GPP Assessment

The site-mean GPPobs across sites represent the spatial variance of GPP. We used NSE, R 2, and NRMSE to meas-
ure the accuracy of the site-mean GPPsim compared with GPPobs to evaluate the ability of these parameterization 
methods to capture the spatial variability of GPP.

2.3.3.  Comprehensive Assessment Across Spatio-Temporal Scales Based on Model Likelihood

The likelihood of each parameterization method, P, was calculated according to Bao et  al.  (2022). To avoid 
selecting a method falling shortly at locally describing ecosystem GPP, P represents an overall performance at 
200 different site groups. In each group, 100 sites were selected randomly from all sites and 2-year GPP was then 
randomly extracted from each of these 100 sites. The 200 site-years GPPsim were compared to GPPobs based on 
NSE, R 2, and NRMSE at each site-year independently. The differences between the daily, weekly, and monthly 
NSE, R 2, and NRMSE vectors and the yearly NRMSE vectors per parameterization method (each with 200 
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elements) were tested using Kolmogorov-Smirnov statistical test and t-test. The method with statistically higher 
NSE, R 2 or lower NRMSE than others was given with the largest score (=1, otherwise = 0) at each site group. In 
case that two or more methods were statistically equal and better than others, NSE, R 2, or NRMSE across all 
site-years was additionally computed to sort these methods independently. P is equal to the average score across 
all site groups. The average P across different statistical metrics (NSE, R 2, and NRMSE) and time scales (daily, 
weekly, monthly, and yearly) was used to detect the best parameterization method.

2.3.4.  Comparison Between Predicted Parameters and Calibrated Parameters

Since the 13 parameters have different meanings and ranges, they were compared independently. The similarity 
between the predicted parameters using methods introduced in Section 2.2 and the calibrated parameters based 
on the observational data (see Text S1 in Supporting Information S1) was assessed using NSE, R 2, and NRMSE.

2.4.  Feature Importance Estimation

We evaluated the importance of input features using three methods and selected the most important features based 
on the average normalized feature importance values.

2.4.1.  Shapley-Based Feature Importance (SHAP)

The Shapley value of a feature is calculated based on the deviation of the predicted parameter at a certain input 
from the average prediction (Lundberg & Lee,  2017), which represents the contribution of a feature to the 
output. Here SHAP is equal to the average absolute Shapley value across all inputs. The average SHAP across 
all cross-validation groups (Friedman, 2001) was used to assess the contribution of features for each parameter 
and all parameters.

2.4.2.  Layer-Wise-Relevance-Propagation-Based Feature Importance (LRP)

The layer-wise relevance propagation refers to a strategy that allows decomposing the prediction of the neural 
network over an input feature (Montavon et al., 2019). It is usually used in deep classification neural networks, 
here we applied LRP to assess a shallow regression neural network. We calculated the relevance vector according 
to Bach et al. (2015) and measured the feature importance according to the average relevance across different 
cross-validation groups.

2.4.3.  Partial-Dependence-Based Feature Importance (PD)

We estimated the partial dependence of the prediction on each input feature based on Friedman's (2001) algo-
rithm. The feature importance, PD, was measured according to the partial dependence, which is equal to the 
standard deviation of the partial dependence if the input feature is non-categorical variables, otherwise is equal 
to the one-fourth of the absolute partial dependence range (Greenwell et al., 2018).

3.  Results
3.1.  Temporal and Spatial Assessment

The parameterization method based on the neural network aiming at minimizing GPP errors and constraining 
sensitivity functions, SPIE, had the best performance compared with other typical parameterization methods. All 
the assessing metrics at daily, weekly, monthly, and yearly scales, NSE (Figure 2), R 2 (Figure S1 in Supporting 
Information S1) and NRMSE (Figure S2 in Supporting Information S1), showed that SPIE was better at more 
sites (i.e., more bright color blocks in Figure 2). The spatial variability of GPP can be also better captured by 
SPIE, which had higher NSE, R 2, and lower NRMSE measured by site-mean GPPobs and GPPsim (Figure 3). The 
accuracy of time series and site-mean GPPsim using other methods were all significantly worse than SPIE. The 
results of these parameterization methods were also compared to those of site-specific calibrations (“site-calib”, 
see details in Section 2.1.1). In the following analyses, the performance of “site-calib” is set as the benchmark 
of the cross-validation exercises since it represents the maximum NSE would reach in any of the out-of-sample 
prediction approaches. Although SPIE cannot perform as well as the site-specific calibration, it is the best param-
eter extrapolation method globally.

The global best parameterization method, SPIE, outperformed across various PFTs and climate types. It had the 
highest daily NSE quantiles for each PFT and climate type considered in this study (Figure 4). While SPIE was 
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relatively better than other methods, no extrapolated parameters can provide accurate GPP dynamics (NSE > 0.4) 
at closed shrubland (Figure 4c), woody savanna (Figure 4l), tropical (Figure 4m) and polar (Figure 4q) climate 
types given that the model using calibrated parameters was good. It demonstrated that the variance of current 
extrapolated parameters was still insufficient and the parameters are possible to be overfitted in site calibrations. 
Using R 2 or NRMSE as the assessing metric (see details in Figures S3 and S4 of the Supporting Information S1), 
the parameterization methods showed smaller but robust relative differences, that is, the SPIE was still the best 
method. In general, while none of these parameter extrapolation methods can reach the highest model perfor-
mance, SPIE was the best option for areas without observational data.

The model likelihood, P, which represents the likelihood of a model statistically better than others across vari-
ous site groups, illustrated that SPIE was the best method to extrapolate parameters, followed by OPT-All and 
Climmed with likelihoods lower than 0.06 (i.e., at less than 6% groups of sites the two methods can outperform). 
The average P of SPIE across daily, weekly, monthly, and yearly scales, and across various assessing metrics was 
also significantly higher than the other methods. It represented that the method is robust across multiple temporal 
and spatial scales.

3.2.  Differences Between Calibrated Parameters and Predicted 
Parameters

The predicted parameters displayed different distribution patterns from the 
calibrated parameters. Taking the best method, SPIE, as an example (Figure 6), 
ranges of predicted parameters were narrower than calibrated parameters 
given the same predefined range. Further, SPIE predicted parameters had no 
“edge-hitting” problem, which means that the parameter frequently reaches 
its maximum or minimum values, for example, the calibrated parameters 
Topt, kT, Cκ, Ca0, Cm and kW (gray bars in Figures 6b–6c, 6f–6h, and 6j). The 
other parameterization methods based on ecosystem properties (e.g., mRF, 
Figure S5 in Supporting Information  S1) also showed narrower ranges. 
However, clustering and optimization-based methods had similar ranges to 
the site-specific calibrations and more edge-hitting instances than SPIE (see 
details in Figures S6 and S7 of the Supporting Information S1).

The LUE model performance was not determined by the parameter difference 
to site-specific calibrations. For example, NSE between the predicted param-
eters using SPIE and calibrated parameters across sites were all negative. The 
maximum R 2 was 0.08 and the lowest NRMSE was 0.08. Furthermore, the 
NSE difference between the calibration and SPIE was not correlated with 

Figure 2.  Comparison of NSE between GPPobs and GPPsim based on 12 different parameterization methods (see definitions of PFTmean, Climmean, PFTmed, Climmed, 
Sitesim, OPT-All, OPT-PFT, sRF, mRF, mNN, SPIE, and P-model in Section 2.2), and NSE between GPPobs and GPPcalib (“site-calib”, see the calibration process in 
Text S1 of the Supporting Information S1) at daily (a), weekly (b), monthly (c) and yearly (d) scales. The methods are sorted according to the number of sites with 
NSE ≥ 0.3, which is displayed under each bar. The sites with NSE < 0.3 are in white color. The area under the gray dashed line represents the sites excluded in the 
comparison due to less than four good-quality (see the definition of “good-quality” data in Section 2.3) data points.

Figure 3.  Comparison of NSE, R 2, and normalized root mean squared error 
between the site-mean GPPobs and GPPsim. The bars (i.e., parameterization 
methods) are sorted according to NSE.
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the  relative difference between calibrated and predicted parameters (Figure 7). Thus, the predicted parameters 
were not comparable to the calibrated parameters while they can produce similar GPP, suggesting the overfitting 
and parameter equifinality in the site-specific calibrations of LUE model. It also reflects the potential risk in apply-
ing calibrated parameters as the ground truth to make predictions or extrapolations of model parameters in space.

3.3.  Important Features for Explaining Model Parameter Variability

The average normalized values of SHAP, LRP and PD illustrated that bioclimatic variables, soil properties, and 
VIF were the most important feature classes explaining the spatial variability of model parameters (Figure 8). The 
importance values differed across three different methods, but all of them showed that atmospheric NPdep was 
not an important feature class. However, the original SHAP shows that atmospheric phosphorus deposition was 
the tenth important feature (Figure S8b in Supporting Information S1). Some specific PFTs, for example, DBF 
and MF, had relatively higher SHAP and LRP (Figures S8b and S8c in Supporting Information S1), indicating 
that their relative parameter vectors had different ranges compared to other PFTs. All approaches showed that 
most climate types were not important for determining model parameters (see details in Figures S8a–S8d of the 
Supporting Information S1). Given the divergence among approaches, the specific important feature was hard to 
determine. The approach differences also existed in each parameter, while the ranks of feature classes remained 
in the same order as the ranks for all parameters (Figure S9 in Supporting Information S1). On average, the most 
important feature classes were bioclimatic variables, soil properties, and VIF.

4.  Discussion
4.1.  Well-Constrained Site-Specific Parameterization Is Better Than PFT-Dependent Parameterization

It has been shown that the long-used PFT-based parameterization cannot capture the variance in parameters within 
PFT (Bloom et al., 2016) and can be influenced by PFT misclassification errors. The method of directly using 
parameters from papers without local or global evaluation can be also risky. P-model which adopted the globally 

Figure 4.  Site-level daily NSE comparison across all sites (a), per plant functional type (b–l) and climate type (m–q). The mean and median per type are represented by 
the black cross and the black line, respectively. The methods are sorted according to NSE medians across all sites. The area where NSE is lower than minus three is not 
displayed.
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fixed parameters upscaled from the leaf scale might not include PFT errors 
(Mengoli et al., 2022; B. D. Stocker et al., 2020), but had limited accuracy 
across temporal (Figure 2) and spatial scales (Figure 3). Here, results showed 
that the globally fixed parameterization method (e.g., P-model) was worse 
than the PFT-based method (e.g., OPT-PFT, and PFTmean). The global optimi-
zation method (e.g., OPT-All) had slightly worse performance than OPT-PFT 
at the global scale while was better than other PFT-based approaches such 
as PFTmean and PFTmed. However, OPT-All had accurate predictions at fewer 
sites (Figure 2). This agrees with a study using the PRELES model (Tian 
et al., 2020), which demonstrated that globally optimized parameters are not 
sufficient to reflect the variability of GPP sensitivities. Luo and Schuur (2020) 
also confirmed that model parameters should vary with the spatial and 
temporal changes of ecosystem properties but not depend on PFTs. While the 
site-specific parameterizations (Sitesim, sRF, mRF, and mNN) have higher 
flexibility than clustering methods (PFTmean, Climmean, PFTmed, and Climmed), 
they did not show a robust advantage due to uncertainties remained in the 
calibrated parameters, which were used to constrain the predicted parameters 
in these methods. However, the site-specific parameterization constraining 
GPP prediction errors and sensitivity functions, SPIE, reaches the highest 
performance, highlighting that the well-constrained site-specific parameter-

ization method can provide more reliable outputs than clustering and optimization methods. This is the opposite 
of the conclusion of Tian et al.  (2020) who tested only the site-specific optimization method showing higher 
uncertainties than the PFT-based optimization method.

4.2.  Reduced Parameter Variability by Considering the Relationship Between Parameters and Ecosystem 
Properties

Our results reveal the equifinality of model parameters, which consequently increases the model uncertainty. 
While no extrapolated parameter vectors outperformed calibrated ones, parameter ranges were better constrained 
in all methods based on ecosystem properties (e.g., sRF, mRF, mNN, and SPIE) compared with site calibrations, 
clustering and optimization methods. The results of parameter distribution and GPP simulation performance 
demonstrate that considering physical links between GPP sensitivities and ecosystem properties can reduce the 
parameter equifinality and the overfitting in site-specific calibrations. This is also true in other LUE models 
(Horn & Schulz,  2011b). Furthermore, SPIE, considering only the GPP errors and constraints on sensitivity 
functions but not the distance to calibrated parameters, avoids inheriting uncertainties from model calibration. 
In general, the model parameterization relying on ecosystem properties can reduce the parameter uncertainty 
resulting from model equifinality.

Figure 5.  The average model likelihood (P) of parameterization methods.

Figure 6.  Probability density function of the calibrated parameters (site-calib) and the predicted parameters by SPIE.
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4.3.  Drivers of the Spatial Variability of GPP Sensitivities

Overall, the information in bioclimatic variables, soil properties and vegetation features explain most of the 
spatial variation in predicted parameters by SPIE (Figure 8). Taking Topt as an example, our results display 
that this parameter is controlled by bioclimatic variables primarily (Figure S9b in Supporting Information S1), 
followed by soil properties and vegetation features. PFT is the fourth important feature determining  the spatial 
variability of Topt. The results agree partly with Huang et al. (2019) and Chang et al. (2020), which illustrate the 
relationship of Topt to mean annual temperature and vegetation index, respectively. These two studies together 
with ours showed that bioclimatic variables, soil properties and vegetation features cannot be neglected in 
determining Topt. Furthermore, bioclimatic variables, vegetation features and soil properties presented higher 
importance than PFT for other parameters of the LUE model. The parameters varying with six classes of 
features are significantly better than those parameters only varying with PFT or without spatial variability 
(Figures 2–5). The results are in contrast to studies supporting PFT-based and globally fixed parameteriza-
tion (Tian et al., 2020; Yuan et al., 2014a). However, the general observation is similar to the results of other 
independent studies using a different LUE model (Horn & Schulz, 2011b) and terrestrial biosphere models 

(Peaucelle et al., 2019). These two studies also demonstrated that ecosys-
tem model parameters are controlled by climate and vegetation features 
along with PFT. Our study highlights the significance of considering more 
ecosystem properties including vegetation features, climate conditions and 
soil properties in ecosystem model parameterization. Given our assump-
tion that model parameters indicate ecosystem sensitivities, the results 
demonstrate the ecological understanding  that vegetation features, climate 
conditions, soil properties along with plant forms impose instrumental 
controls on how ecosystems respond to environmental changes.

However, the current approach needs further development toward pinpoint-
ing key features controlling the spatial variability of parameters. On the one 
hand, strong covariation between input features (Figure S10 in Supporting 
Information S1) limits a confident variable attribution. On the other hand, 
differences in variable importance between different methods (e.g., SHAP, 
LRP, and PD) may result in different variable rankings (Figures S8 and S9 
in Supporting Information  S1). These may be associated with the covari-
ation between features as well as the underlying assumptions per feature 
importance estimation method. However, given stationarity in the correla-
tion structure between features, none of these aspects would limit a statistical 
extrapolation of parameter variability in space.

Figure 7.  The distribution of site-level NSE differences between site-specific calibration (NSEsite-calib) and SPIE (NSESPIE) with the relative differences between 
calibrated parameters and predicted parameters. The red line is the least-squares fitting line of the scatters. The correlation coefficient (r) is displayed at the upper-right 
corner.

Figure 8.  The input feature classes sorted by the average normalized SHAP, 
LRP, and PD for all parameters. The original SHAP, LRP, and PD were 
divided by the sum to get the normalized values. The sum of all bars is 
equal to one. The detailed average SHAP, LRP, and PD values per feature 
are displayed in Figure S8 of the Supporting Information S1. The feature 
classes (see definitions in Table S3 of the Supporting Information S1) refer to 
plant functional types, Koeppen-Geiger climate classification types (Clim), 
bioclimatic variables and aridity indexes (BioClim), vegetation index features, 
atmospheric nitrogen and phosphorus deposition and soil properties (Soil).
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Differences in the model fitness between the site calibration and SPIE may reflect common overfitting issues in 
standard calibration exercises, challenging the generalization of a given GPP model and/or of features and archi-
tectures for the extrapolation approach. Exploring the contribution of additional variables may be a model-specific 
exercise, for example, illumination features, as in the model of Horn and Schulz (2011b), that can contribute to 
the enhanced spatial variance in predicted parameters.

Given the background understanding that ecosystem properties, including vegetation features, climate regimes, 
soil characteristics and other environmental traits, influence response sensitivities of carbon assimilation fluxes 
to environmental conditions, our results suggest further expanding SPIE approach to other kinds of terrestrial 
ecosystem carbon cycle models (e.g., land surface models and dynamic global vegetation models). Yet, temporal 
changes in ecosystem properties can affect parameters (Luo & Schuur, 2020). Our results also suggest a caution-
ary remark regarding the temporal variation in parameters when extrapolating or applying parameters to long 
time scales (e.g., beyond decadal scales in prognostic simulations).

5.  Conclusions
In this study, we developed a model parameterization approach based on the link between ecosystem sensitivities 
and properties constrained by GPP simulation errors and sensitivity functions. The method leverages a neural 
network method to learn the parameterization of an LUE model. Moreover, the experimental design demon-
strates that the method enables parameter extrapolation in regions without observational data with significantly 
and substantially higher accuracy than the widely used PFT-based and globally fixed parameterization methods. 
Compared with a set of univariate clustering, similarity-, regression-based and fixed methods considered in this 
study, our approach uniquely predicts GPP fluxes with confidence in cross-validation (NSE > 0 at 74% of sites). 
The resulting reduction in parameter variability through  prediction via ecosystem properties suggests reduc-
tions in equifinality and overfitting, which commonly emerge from site-specific parameterizations. Vegetation 
features, bioclimatic variables, soil properties and some PFTs can explain the spatial variability of LUE model 
parameters. Overall, these are key features for diagnostic modeling exercises, although the temporal variation 
in the parameters and the relationship between them and ecosystem properties need further exploration toward 
prognostic modeling. Given the general need for biological and ecological parameterizations in carbon and water 
terrestrial ecosystem models, our results propose statistical learning approaches for the parameterization of land 
surface schemes in Earth system models.

Data Availability Statement
Meteorological input data for the LUE model is available at the website of FLUXNET (Pastorello et al., 2020). 
The FluxnetEO product used for extracting vegetation index is accessed from ICOS Carbon Portal for LANDSAT 
(Walther et al., 2022a) and for MODIS (Walther et al., 2022b). CRUNCEP data set for calculating bioclimatic 
variables is available at NCAR (Viovy, 2018). Atmospheric NPdep data (R. Wang et al., 2017) are extracted and 
applied as elements of input features. SoilGrids product is accessed through WCS tool (Poggio et al., 2021). The 
neural network framework was developed using trainNetwork (Kudo et al., 1999) introduced in MATLAB 2022a, 
available under MATLAB license at https://www.mathworks.com/products/matlab.html. Data were processed 
and figures were made with MATLAB 2022a. The model outputs, parameters and scripts supporting the analy-
sis  and production of figures are available at Bao and Carvalhais (2023).
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Erratum
The originally published version of this article contained several typographical errors. The word “signif-
icance” has been removed from the second Key Point and the word “challenging” has been replaced with 
“improving” in the third Key Point. In the Abstract, within the phrase “while all the other investigated 
approaches showed negative NSE” the word “negative” has been replaced with “lower.” In Table 1, the initial 
value under the column labeled “Range” has been modified from 0-10 to 0.1-7.0. In the ninth sentence of the 
second paragraph of Section 2.2.5 the hidden layer value has been changed from 2 to 3. In the second sentence 
of the caption for Figure 2, “positive NSE” has been replaced with “NSE ≥ 0.3” and in the third sentence 
“negative NSE” has been changed to “NSE < 0.3.” Figures 2, 3, 4, and 5 have been updated and replaced. 
The fifth sentence of Section 4.1 has been replaced with the following: “The global optimization method 
(e.g., OPT-All) had slightly worse performance than OPT-PFT at the global scale while was better than other 
PFT-based approaches such as PFTmean and PFTmed.” The fourth sentence of the Conclusions should be 
replaced with “Compared with a set of univariate clustering, similarity-, regression-based and fixed meth-
ods considered in this study, our approach uniquely predicts GPP fluxes with confidence in cross-validation 
(NSE > 0 at 74% of sites).” The errors have been corrected, and this may be considered the authoritative 
version of record.
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