
1. Introduction
Fire is one of the main natural vegetation disturbance agents, and as such, a primary interactive component 
in the terrestrial ecosystem. Biomass burning affects the structure and dynamics of ecological processes 
(McLauchlan et  al.,  2020). Fire emissions alter atmospheric composition of trace gases and aerosol particles 
(Koppmann et al., 2005; Son, Kim, et al., 2022; Son, Ma, et al., 2022), with subsequent influences on land surface 
albedo (López-Saldaña et al., 2015), energy budgets (F. Li et al., 2017), climate (Liu et al., 2019; Voulgarakis & 
Field, 2015) and global biogeochemical cycles (Carcaillet et al., 2002; Crutzen & Andreae, 1990). Present-day 
global carbon emissions due to fire are approximately 1.5–3.0  PgC/yr (van der Werf et  al.,  2017). There is 
ample evidence that climate change has already resulted in increased fire risk and burned area in various areas 
around the world, and future increases are expected due to climate change (Seidl et al., 2017; Son et al., 2021). 
As fires are a significant source of greenhouse gases, there is the potential for positive (Harrison et al., 2018; 
Kurz et al., 1995) and negative feedbacks (Ward et al., 2012). Yet, important uncertainties remain to adequately 
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represent fires in Earth system models (ESMs), with uncertainties in the representation of fire disturbance still 
dominating the overall uncertainties in the estimation of carbon fluxes from land (Hardouin et al., 2022).

Global fire models have been developed based on empirical and physical understanding of the fire process, and 
these have been incorporated within dynamic global vegetation models (DGVMs) (Hantson et al., 2016). In the 
early stage of global fire modeling, burnt area was estimated based on the amount of dry fuel and the length of fire 
season (Thonicke et al., 2001). The representation of frequency of fire occurrence was advanced by considering 
weather-driven fire risk (Lenihan, 1998). Venevsky et al. (2002) added characteristics of fire spread by adopting 
the Rothermel's rate-of-spread (RoS) equations (Rothermel, 1972). Based on the RoS, more advanced fire related 
physical representations were introduced (Pfeiffer et al., 2013; Thonicke et al., 2010) and implemented in various 
DGVMs (Drüke et al., 2019; Lasslop et al., 2014; Yue et al., 2016). Human activity impacts are also considered as 
nonlinear functions for fire ignition and suppression based on population density, gross domestic product (GDP) 
and land-use changes (Kloster et al., 2010; le Page et al., 2015; F. Li et al., 2013).

Although there has been remarkable progress in global fire modeling, there are still many challenges remain-
ing to represent the fire process and fire-vegetation interactions. For instance, fire characteristics, such as the 
completeness of combustion and plant mortality, are not robustly parameterized to reflect differences depending 
on vegetation types (Lasslop et al., 2014). Uncertainties in vegetation effects on fire remain as a main drawback in 
DGVMs (Forkel et al., 2019). Besides, while fire modeling has advanced with more sophisticated process based 
representations, there is still no agreement on the optimal level of complexity for a global fire model (Hantson 
et al., 2016).

Deep learning (DL), as a subset of machine learning (ML), has recently been incorporated in fire studies lead-
ing to significant advances within different aspects of fire science. For instance, convolutional neural network 
(CNN) is a class of deep learning algorithms that utilizes convolutional layers to extract spatial features from 
images or grid format data sets. The fundamental concept underlying CNN lies in its utilization of convolution 
layers. Convolution is a mathematical operation involving a small filter to detect and capture local patterns. By 
leveraging CNNs, the spatial behavior of fire has been successfully captured (Hodges & Lattimer, 2019; Radke 
et al., 2019). The long short-term memory modeling (LSTM, see Section 2) approaches have also demonstrated 
their capability in predicting fire damage and duration (Z. Li et al., 2021; Liang et al., 2019). As an extension of 
LSTM architecture, convolutional-LSTM (Shi et al., 2015) combines the advantages of both LSTM and CNN, 
rendering it particularly well-suited for tasks that necessitate the simultaneous understanding temporal patterns 
and spatial information. The model first processes input through convolutional operations to generate feature 
maps, similar to traditional CNNs. Subsequently, LSTM cells take these results as input and maintain their hidden 
states over time, facilitating the capture of temporal dependencies. Kondylatos et al. (2022) incorporated mete-
orological, environmental and anthropogenic drivers into a convolutional-LSTM to comprehensively address the 
spatiotemporal context for wildfire danger prediction. Other studies leveraged ML/DL methods to characterize 
various aspects of fire occurrence, such as fire weather (Son, Kim, et al., 2022; Son, Ma, et al., 2022), lightning 
ignition (Coughlan et al., 2021), fire susceptibility (Zhang et al., 2021) and fuel availability (D’Este et al., 2021).

The main objective of this study is to leverage the advantages of DL in enhancing a process-based model, with 
a specific focus on improving biomass burnt damage simulation. To achieve this, we first develop a DL-based 
global fire model, consisting of three independent modules representing weather-driven fire danger, land prop-
erties, and anthropogenic effects on burnt areas. Subsequently, we integrate this model into the land model of 
the Icosahedral Non-hydrostatic Earth System Model (ICON-ESM), serving as a surrogate for process-based fire 
representation. Lastly, we apply an interpretable method on the DL model to analyze regional characteristics and 
the limits of our hybrid modeling approach. Compared to a previous DL surrogate fire model (Zhu et al., 2022), 
our study has advances in two folds: (a) we incorporate LSTM based recurrent model architecture to consider 
time dependent memory effects from dynamic weather and vegetation processes; and (b) our model training was 
based on observational data sets, except for fuel load, allowing it to be coupled with any DGVM.

2. Methodology and Data
2.1. JSBACH4 and Its Simple Fire Scheme

JSBACH4 (Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg version 4); (Nabel et  al.,  2020; 
Schneck et  al.,  2022), which is the land surface model used in the ICON-ESM, incorporates a simple fire 
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model implemented to estimate fire damage based on combustible fuel availability and fuel dryness (Jungclaus 
et al., 2022). As one of the most simple fire representations, it can be applied in any global land surface model. 
The primary objective of the fire scheme is more focused on the disturbance effect on natural land cover changes, 
rather than fire occurrence and interactions, limiting its role on vegetation dynamics and carbon cycling in 
ecosystems. Instead, the previous version of JSBACH (JSBACH3.2) used the SPITFIRE fire model (Thonicke 
et al., 2010) to simulate global fire regimes, but it has not yet been implemented in JSBACH4.

In the simple fire scheme, the fuel availability is represented by the total litter density (𝐴𝐴 𝐴𝐴 ) and is compared to the 
litter threshold (𝐴𝐴 𝐴𝐴0 ). The fuel dryness is estimated from surface level air relative humidity (𝐴𝐴 rh𝑡𝑡 ) smoothed with a 
persistence factor (p) at each time step (Equation 1). When the humidity decreases lower than its threshold (𝐴𝐴 rh0 ), 
the fraction of burned area (𝐴𝐴 FBA ) is assumed to linearly increase as humidity decreases:

rh𝑡𝑡 = rh𝑡𝑡−1 × 𝑝𝑝 + min(rh𝑡𝑡, 100) × (1 − 𝑝𝑝), 𝑝𝑝 = 0.95

1

48 (1)

FBA = FBAmin +
1

𝜏𝜏
×
rh0 − rh𝑡𝑡

rh0
if𝐿𝐿 𝐿 𝐿𝐿0 and rh < rh0 otherwise 0 (2)

where, 𝐴𝐴 𝐴𝐴  denotes the frequency of fire occurrence: set as 6 years for woody and 2 years for grass type vegeta-
tion. The burnt fraction is computed on a daily time step and is utilized to update the relocation of carbon and 
nitrogen, assuming that all vegetation within the burned area perishes, notwithstanding the fact that only a part 
of it undergoes complete combustion. We take the simple fire model (hereafter referred to as JSB4-simple) as the 
baseline for model evaluation. The standalone version of JSBACH4 is used to run JSB4-simple with the default 
configurations as used in JSBACH3.2 and described in Reick et al. (2021).

2.2. Deep Learning (DL) Fire Model

The deep learning fire model (DL-fire) is composed of three modules: weather-driven fire danger, land proper-
ties and anthropogenic effects (Figure 1). The development of the modules for weather danger (W-LSTM) and 
land properties (L-LSTM) are based on the long short-term memory network approach (LSTM) (Hochreiter & 
Schmidhuber, 1997). LSTM is an advanced recursive neural network to handle temporal dynamic behaviors from 

Figure 1. Flowchart of DL-fire model. An input vector with 50 predictors ([b,50], where b is the batch size) is divided into 
three sub-modules: 9 predictors for W-LSTM ([b,9], shown in blue vector), 23 predictors for L-LSTM ([b,23], green vector), 
and 18 predictors for A-NN ([b,18], gray vector). The output of each module is merged by element-wise multiplication, 
resulting in a dimension of 8 (red vector), which matches the number of PFTs, except for the bare land type, used in L-LSTM. 
The burnt fraction is finally calculated by summing up the merged output per PFT, which is obtained by taking the inner 
product between the output and the PFT vector (orange vector), and multiplying it with two physical constraint terms.
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sequential data. The key aspect of the LSTM approach is its memory unit, called cell state that maintains infor-
mation on states over timesteps, and its update is regulated by input and forget gates:

𝑖𝑖𝑡𝑡 = 𝑎𝑎sigmoid(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (3)

𝑓𝑓𝑡𝑡 = 𝑎𝑎sigmoid(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓 ) (4)

𝑜𝑜𝑡𝑡 = 𝑎𝑎sigmoid(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (5)

𝑐𝑐𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (6)

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡 (7)

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh (𝑐𝑐𝑡𝑡) (8)

where 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 denote the input gate, forget gate, output gate and 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴 denote cell and hidden state. The terms 
𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 refer to the weight matrices and bias vectors for each gate and the cell states (e.g., 𝐴𝐴 𝐴𝐴𝑖𝑖 is the matrix 

of weights for the input gate), 𝐴𝐴 𝐴𝐴sigmoid is the sigmoid function, 𝐴𝐴 tan ℎ is the hyperbolic tangent function, and ⨀ 
denotes the element-wise product of vectors. The output dimension of the LSTM is set to 8 to be equal with the 
number of the plant functional types (PFTs), except for the bare land type.

The anthropogenic effect module uses two layers of fully connected feed-forward network:

ℎ𝑡𝑡 = act(𝑊𝑊1 ⋅ 𝑥𝑥𝑡𝑡 + 𝑏𝑏1) (9)

𝑜𝑜𝑡𝑡 = 𝑊𝑊2 ⋅ ℎ𝑡𝑡 + 𝑏𝑏2 (10)

where 𝐴𝐴 𝐴𝐴 denotes the input vector for anthropogenic variables and 𝐴𝐴 𝐴 is hidden layer vectors. The 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 terms 
are weight matrices and bias vectors for the input and hidden vectors. The function 𝐴𝐴 act represents a nonlinear 
transformation using a softplus function (Dugas et al., 2000) in this study. The vector 𝐴𝐴 𝐴𝐴 is the output vector of the 
anthropogenic effect module that has the same dimension as the outputs of the W-LSTM and L-LSTM modules.

The final output, the fraction of burned area, is the computed sum of all PFTs, except for the bare land type, after 
multiplying results of the three modules and the fractions of PFTs (orange vector in Figure 1). Also, we use the 
fraction of bare land (𝐴𝐴 𝐴𝐴_bare ) and snow (𝐴𝐴 𝐴𝐴_snow ), fuel (above ground plant litter in JSBACH4) and relative 
humidity not only as LSTM input predictors, but also as constraints on fire occurrence and intensity:

FBA =

(

∑

𝑜𝑜𝑤𝑤 × 𝑜𝑜𝑙𝑙 × 𝑜𝑜𝑎𝑎 × 𝑓𝑓_PFTs
)

× fire prone area × dry fuel availability (11)

fire prone area = 1 − 𝑓𝑓_bare − 𝑓𝑓_snow (12)

dry fuel availability = fuelnorm × 𝑆𝑆

(

1 −
rh

100

)

if rh > rh0 otherwise 0 (13)

𝑆𝑆(𝑥𝑥) =
1

1 + 𝑒𝑒−20×(𝑥𝑥−0.5)
 (14)

where 𝐴𝐴 𝐴𝐴𝑤𝑤 , 𝐴𝐴 𝐴𝐴𝑙𝑙 , 𝐴𝐴 𝐴𝐴𝑎𝑎 denote output vectors of W-LSTM, L-LSTM and anthropogenic effect modules and 𝐴𝐴 𝐴𝐴_PFTs 
denotes the fractions of PFTs. We use sigmoidal curve function (𝐴𝐴 𝐴𝐴 ) to transform relative humidity into a non-linear 
space. 𝐴𝐴 rh0 is the threshold of relative humidity for fire occurrence set as 60 (%), 𝐴𝐴 fuelnorm is normalized fuel using 
its maximum and minimum values during the training period (Equation 15).

2.3. Burnt Fraction

For model training and evaluation, we used daily burned area from the Global Fire Emissions Database (GFED4) 
(Randerson et al., 2015) and calculated the burnt fraction for each grid cell. The GFED4 burned area product is 
based on the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 (MCD64A1 v5.1), glob-
ally available at 0.25° × 0.25° spatial resolution.

Extreme data imbalance between instances of fire and no-fire is observed over all regions (Table 1). If the data 
with a large proportion of no-fire instances are directly used for model training, it is highly likely to mislead 
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model outputs to converge into zero values. In order to reduce the risk of zero 
convergence, we adopt two strategies. We first used a Gaussian kernel with 
30 days of window size to smooth the burned area (step 1 in Table 1). Subse-
quently, we downsample no-fire instances according to ratios in Table 1 (step 
2 ratio), reducing the imbalanced ratios to be close to 1:1 for all regions.

2.4. Input Variables

The DL-fire uses 50 predictors which are divided into three sub-modules to 
predict burnt fraction illustrated in detail in Tables 2–4. The weather danger 
module (W-LSTM) uses 9 predictors, including anomalies of temperature, 
specific and relative air humidity. Weather variables, such as temperature, 
specific/relative air humidity, wind speed and precipitation, are obtained from 
ERA5 (Hersbach et al., 2020) and lightning climatology is based on a data 
set from the spaceborne Optical Transient Detector (OTD) and Lightning 
Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) 
satellite (Cecil et al., 2014). The anomalies are calculated by extracting daily 
climatology (mean values on a day of year basis) during the years 1950–2020.

The land property module (L-LSTM) takes 23 predictors including the 
water volumes in four soil layers which are obtained from ERA5-Land 
(Muñoz-Sabater et al., 2021) and the Leaf Area Index (LAI) which is derived 
from the collection-5 MODIS LAI product (Myneni et al., 2015). We also 
calculate daily anomalies for the water volumes and LAI using the above 

mentioned method during 1950–2020 and 2003–2020, respectively. The topographic factors, such as elevation, 
slope and roughness, are taken from Amatulli et al. (2018). The amount of fuel is simulated by JSB4-simple. The 
area distributions of plant functional types (PFTs) are obtained from Pongratz et al. (2008), given as inputs for 
running JSBACH4 and we remap PFTs to be nine types as outlined in Table 3.

The anthropogenic effect module (A-NN) takes into account a total of 18 predictors from five different character-
istics: population density (Klein Goldewijk et al., 2017), gross domestic product (GDP) and human development 

Fire:no-fire Step 1 Step 2 Ratio (step 2)

BONA 1:1313 1:301 1:1.0 300

TENA 1:412 1:61 1:1.23 50

CEAM 1:122 1:23 1:1.16 20

NHSA 1:85 1:20 1:1.02 20

SHSA 1:72 1:15 1:1.53 10

EURO 1:988 1:149 1:1.49 100

MIDE 1:1023 1:188 1:1.88 100

NHAF 1:27 1:8.4 1:1.69 5

SHAF 1:12 1:4.0 1:0.99 5

BOAS 1:721 1:128 1:1.27 100

CEAS 1:188 1:32 1:1.06 30

SEAS 1:104 1:24 1:1.19 20

EQAS 1:180 1:29 1:1.43 20

AUST 1:75 1:18 1:1.78 10

Note. The last column is for downsampling ratios used for step 2.

Table 1 
Ratio Between Grid-Cell Level Fire/No-Fire Incidents Per Region

Temperature (High) ERA5 
(Hersbach 
et al., 2020)

 – Temperature at 2m  – Dry fuel moisture

 – Temperature anomaly  – Increase flammability

Humidity (High)

 – Specific humidity  – Preserve fuel moisture

 – Specific humidity anomaly  – Impede fire ignition & spread

 – Relative humidity (Low)

 – Relative humidity anomaly  – Increase fuel availability

Precipitation (High)

 – Total precipitation  – Act as a natural fire break

 – Support plant growth

(Low)

 – Contribute drought conditions

Wind speed (High)

 – Wind speed  – Accelerate fire progression

 – Intensify fire behavior

Lightning (High) OTD/LIS (Cecil 
et al., 2014) – Lightning climatology  – Ignite fire as a natural source

Table 2 
Input Predictors for Weather Danger Module (W-LSTM) and Their Brief Ecological Description
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index (HDI) (Kummu et al., 2018), total road density (Meijer et al., 2018) and 14 fractions representing the state 
of land use (Hurtt et al., 2020).

All the input variables are regridded and aggregated to a daily timestep and 0.25° spatial resolution to be consist-
ent with the GFED4. Except for PFT fractions constrained in the range of [0,1], we normalized predictors using 
maximum and minimum values of each region based on the training period (��,train_max and ��,train_min , where r 
denotes a GFED region in Figure S1 of the Supporting Information S1), ideally to be in the range of [0,1]:

(𝑥𝑥 − 𝑥𝑥𝑟𝑟𝑟train_min)∕(𝑥𝑥𝑟𝑟𝑟train_max − 𝑥𝑥𝑟𝑟𝑟train_min) (15)

2.5. Model Setup for Training and Simulation With JSBACH4

We develop 14 regional models based on GFED reference regions (Figure S1 in Supporting Information S1). 
To train the models, we use 12 years (2004–2015) of data considering data availability for burnt fraction and all 
the input predictors. We randomly select 80% of the data set from the first 7 years (2004–2010) for training and 
the remaining 20% are for validation during the model training stage. We apply a stratified random sampling 
approach to preserve the same ratios between fire/no-fire incidents. The last 5 years (2011–2015) are used for 
performance evaluation.

The dimension of the hidden layer is set to be 64 for all the three module architectures and dropout regulariza-
tion is implemented for the anthropogenic module layers with 10% of probability to randomly inactivate neural 

Water in soil layers (High) ERA5

 – Volume of water in 4 soil layers lv1: 
0–7 cm, lv2: 7–28 cm, lv3: 28–100 cm, 
lv4: 100–289 cm

 – Promote vegetation growth

(Low)

 – Anomalies in 4 soil layers  – Raise susceptibility to ignition

 – Indicate potential fire severity

LAI (High) MODIS (Myneni et al., 2015)

 – LAI  – Increase fuel loads

 – LAI anomaly  – Enhance resilience against fire

Topography  – Differ the types of vegetation Amatulli et al. (2018)

 – Elevation  – Affect the speed and direction of fire 
spread – Slope

 – Roughness

Fuel (High) JSBACH4

 – Above ground plant litter  – Increase fuel loads

Plant functional types (PFTs)  – PFTs differ fuel characteristics Pongratz et al. (2008)

 – Snow (PFT_snow)

 – Tropical evergreen trees (PFT_tet) (Grass)

 – Tropical deciduous trees (PFT_tdt)  – Easily ignitable fuels

 – Extra-tropical evergreen trees (PFT_eet)  – Facilitate fire spread

 – Extra-tropical deciduous trees. (PFT_edt)  – Lower biomass, reducing fire 
intensity

 – Raingreen shrubs (PFT_rs) (Shrubs & trees)

 – Deciduous shrubs (PFT_ds)  – Higher biomass, increasing fuel 
loads

 – Grass (PFT_grass)  – Contribute to the potential for 
longer-lasting fires – Bare land (PFT_bare)

Table 3 
Input Predictors for Land Property Module (L-LSTM) and Their Brief Ecological Description
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network nodes. For the LSTM modules, the sequence length of training data set is set to 14 days. We use the 
mean square error (MSE) loss function with ADAM optimizer (Kingma & Ba, 2014) by setting the learning rate 
to 0.001 and batch size to 1,024. To avoid overfitting on the training data set, we stop model training after a span 
of 30 epochs where no further improvement is observed in the validation data set.

The DL-fire is trained without coupling to the dynamics of JSBACH4, as an offline learning approach. When the 
DL-fire is integrated into JSBACH4, all the land properties are provided by physics-based dynamics processes, 
except for topography. The other predictors are set to be forced by data sets used for model training and it allows the 
evaluation of simulation results from the year 2001. We perform experiments on the R2B4 ICON-grid system with 
spin-up time of 51 years, starting from the year 1950, and evaluate simulation results from 2001 to 2015. During the 
spin-up period (before the year 2001), we set all anthropogenic variables to be static at the state of 1st January 2001.

2.6. Evaluation Metrics

To quantify the performance in simulating spatial variation, we apply the normalized mean error (NME) with 
area weights suggested by Hantson et al. (2020):

Population (High) HYDE3.2 
(Klein Goldewijk 
et al., 2017)

 – Population density  – More human-caused ignition

(Low)

 – Less availability of firefighting resources

Gross domestic product (GDP) (High) Kummu et al. (2018)

 – GDP per capita  – Facilitate the implementation of environmental policies

(Low)

 – Less infrastructure against fire

Human development index (HDI) (High)

 – HDI  – Higher education and awareness of fire prevention

 – Responsible land management

 – Effective emergency response

Road density (High) GRIP4 (Meijer 
et al., 2018) – Total road density  – More human-caused ignition

 – Easier access for firefighting

Human land use state fractions  – Land use changes can alter fire regimes LUH2 (Hurtt 
et al., 2020) – Forested primary land (LU_primf)

 – Non-forested primary land (LU_primn) (Forested land)

 – Forested secondary land (LU_secdf)  – Larger amount of biomass

 – Non-forested secondary land (LU_secdn) (Secondary land)

 – Urban land (LU_urban)  – Fuel accumulation depends on the stage of forest succession

 – C3 annual crops (LU_c3ann) (Urban land)

 – C4 annual crops (LU_c4ann)  – More human ignition sources

 – C3 perennial crops (LU_c3per)  – Act as a barrier to fire spread

 – C4 perennial crops (LU_c4per) (Crop land)

 – C3 nitrogen-fixing crops (LU_c2nfx)  – Agricultural activities introduce new ignition sources

 – Managed pasture (LU_pastr) (Pasture & rangeland)

 – Rangeland (LU_range)  – Reduce fuel loads by grazing

 – Secondary mean biomass carbon density (kg/m 2, LU_secmb)  – Well-maintained areas can act as a barriers to fire spread

 – Secondary mean age (years, LU_secma)

Table 4 
Input Predictors for Anthropogenic Effect Module (A-NN) and Their Brief Ecological Description
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NME =

∑

𝑖𝑖

𝐴𝐴𝑖𝑖|𝑜𝑜𝑖𝑖 − 𝑚𝑚𝑖𝑖| ∕

∑

𝑖𝑖

𝐴𝐴𝑖𝑖|𝑜𝑜𝑖𝑖 − 𝑜𝑜| (16)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 denotes the observed value, 𝐴𝐴 𝐴𝐴𝑖𝑖 the simulated value and 𝐴𝐴 𝐴𝐴𝑖𝑖 cell area at grid cell 𝐴𝐴 𝐴𝐴  . 𝐴𝐴 𝑜𝑜 is the mean of the 
observed values. A smaller value of NME describes better agreement with observation and zero is for perfect 
match between observation and model simulation. If NME is larger than 1, model performance is worse than 
simple prediction with statistical mean value.

We calculate the Pearson correlation coefficient between daily (rd), monthly (rm) and interannual (ri) variability 
in predicted burnt fraction and GFED4, and the mean phase difference (MPD) to evaluate seasonal variation 
(Kelley et al., 2013). To quantify a distance between two phases, time unit is first transformed as an angle vector:

𝜃𝜃𝑚𝑚 = 2𝜋𝜋(𝑚𝑚 − 1)∕12 (17)

where 𝐴𝐴 𝐴𝐴 denotes month (January–December). Then real (𝐴𝐴 𝐴𝐴𝑥𝑥 ) and imaginary (𝐴𝐴 𝐴𝐴𝑦𝑦 ) component vectors are calcu-
lated by:

𝐿𝐿𝑥𝑥 =

∑

𝑚𝑚

𝑥𝑥𝑚𝑚 cos(𝜃𝜃𝑚𝑚) (18)

𝐿𝐿𝑦𝑦 =

∑

𝑚𝑚

𝑥𝑥𝑚𝑚 sin(𝜃𝜃𝑚𝑚) (19)

The phase (𝐴𝐴 𝐴𝐴  ) is described by direction of the vectors (Equation 20) and MPD quantifies the phase difference by 
Equation 21:

𝑃𝑃 = arctan (𝐿𝐿𝑥𝑥∕𝐿𝐿𝑦𝑦) (20)

MPD =
1

𝜋𝜋

∑

𝑖𝑖

𝐴𝐴𝑖𝑖 × arcos
[

cos
(

𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖

)]

∕

∑

𝑖𝑖

𝐴𝐴𝑖𝑖 (21)

where 𝐴𝐴 𝑃𝑃𝑖𝑖 is phase from model simulation and 𝐴𝐴 𝐴𝐴𝑖𝑖 from observation at grid cell 𝐴𝐴 𝐴𝐴  .

2.7. Layer-Wise Relevance Propagation

To interpret the decision making process of the DL-fire model, we apply the layer-wise relevance propagation 
(LRP) (Bach et al., 2015) to decompose contributions from the input space. LRP computes relevance scores for 
each individual input by propagating relevance from the model output back through the neural network layers. 
While the total amount of relevance scores in each layer is kept consistent, the relevance in a layer is redistributed 
to the previous layer considering weights and input values, and this process repeats until getting the scores for 
the input layer. Here, we normalized relevance scores for each timestep so that the absolute values sum up to 1. 
Then we composite the normalized scores during the evaluation period to compare relative attribution with a 
global aspect.

3. Results
3.1. DL-Fire Model Evaluation

Globally, the predicted burnt fraction shows a good overall accordance with the GFED4 estimates during the eval-
uation period (Figures 2a and 2b) with a NME of 0.64 (Table 5). The pattern of seasonal cycle is also accurately 
captured with 0.3 of MPD and 0.73 of rd. Monthly aggregated predictions show a comparable correlation score 
(rm = 0.80) to that of a previous DL model (0.76) (Joshi & Sukumar, 2021), noting that the evaluation period is 
different for both studies. However, high fractions, especially in the second half of the years 2011 and 2012, are 
underestimated (Figure 2c) indicating a degrading performance skill in interannual variability (ri = 0.35).

Regionally developed models vary in their performance skills. All the regional models show a NME lower than 
1.0 and the best score is achieved in the northern part of South America (NHSA, 0.48), whereas NME is rela-
tively high in regions where it shows large burnt fractions, such as Boreal North America (BONA), the southern 
part of South America (SHSA), the southern part of Africa (SHAF) and Central Asia (CEAS). The model for 
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Central America (CEAM) shows high predictability in seasonal variation with 0.19 of MPD, and the BONA, 
SHSA, Africa and Equatorial Asia (EQAS) also perform well with a performance higher than 0.8 of rd. The 
lowest daily correlations are obtained in the temperate North America (TENA, 0.47) and CEAS (0.41), showing 
underestimations in each of the fire seasons (Figures S2b and S2k in Supporting Information S1). 8 out of 14 
regional models perform well on predicting interannual fire patterns with higher than 0.8 of ri. The least interan-
nual predictability is shown across Southeast Asia (SEAS) and SHAF (ri = −0.14, 0.08) due to a lack in detecting 
high burnt fractions (Figures S2i and S2l in Supporting Information S1). These results, especially due to the 
SHAF region, cause a considerable drop in the interannual predictability at the global scale.

3.2. Coupling With JSBACH4

When the DL-fire model is coupled with JSBACH4 (JSB4-DL-fire), burnt 
fraction prediction skill is significantly enhanced in comparison to the 
simple fire model (JSB4-simple). JSB4-DL-fire improves NME score from 
0.75 to 0.67 at the global scale, and NME decreases in 10 out of 14 regions 
(Table 6). Although burnt fractions in Africa and Siberia are underestimated, 
JSB4-DL-fire successfully captures the spatial variation of burnt fraction, 
especially across fire prone regions, such as Africa, South America, and 
Australia (Figure 3a).

Furthermore, burnt fractions in fuel-limited areas are improved to be 
close to zero in JSB4-DL-fire. JSB4-simple sets nonzero constant param-
eter for the minimum degree of fire damage (see Section 2), the results of 
JSB4-simple show higher than 0.1%/year of damage over almost all areas, 
including deserts and extremely cold regions (Figure 3c). Due to this over-
simplified parameterization, arid areas and high latitudes, such as BONA, 
TENA, Europe (EURO), Middle East (MIDE) and Asia (BOAS and CEAS), 
show poor NME scores (2.34, 2.49, 2.06, 6.10, 1.40, and 1.39, respectively). 
These discrepancies are effectively addressed by JSB4-DL-fire with fuel and 
PFT constraints, improving NME to be lower than 1.0 across all the regions, 
except for MIDE.

The global spatial variation in fire seasonality is compared by visualizing the 
month with maximum fire damage per grid cell during the year 2001–2015 
(Figure  3b). JSB4-DL-fire shows overall coincide fire season distribution 
with GFED4, and the best score of MPD is achieved over CEAM (0.19, 

Figure 2. Spatial and temporal comparison between and GFED4 and DL-fire predictions. The maps of (a) DL-fire and (b) GFED4 visualize annual burnt fraction 
averaged over evaluation period (2011–2015). (c) Compares global mean of burnt fraction from GFED4 (black) and DL-fire (blue).

NME MPD rd rm ri

Global 0.64 0.30 0.73 0.80 0.35

BONA 0.90 0.36 0.81 0.95 0.92

TENA 0.77 0.35 0.47 0.64 0.92

CEAM 0.72 0.19 0.82 0.90 0.86

NHSA 0.48 0.31 0.74 0.85 0.85

SHSA 0.83 0.23 0.85 0.89 0.52

EURO 0.76 0.33 0.60 0.76 0.92

MIDE 0.49 0.31 0.62 0.72 0.30

NHAF 0.58 0.31 0.88 0.93 0.38

SHAF 0.96 0.33 0.90 0.94 0.08

BOAS 0.69 0.31 0.63 0.77 0.82

CEAS 0.86 0.39 0.41 0.55 0.97

SEAS 0.56 0.22 0.60 0.82 −0.14

EQAS 0.55 0.28 0.90 0.97 0.99

AUST 0.50 0.29 0.66 0.76 0.50

Table 5 
Evaluation Metric Scores for DL-Fire
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Table 6). Compared to JSB4-simple, the seasonal phase difference in AUST is also improved (MPD = 0.26), but 
JSB4-DL-fire achieves slightly increased scores in 8 out of 14 regions. Nevertheless, the most notable improve-
ment in JSB4-DL-fire is found in temporal correlations. While the global mean of the JSB4-simple simulation 
has a statistically insignificant relationship with GFED4 (rd, rm ≈ 0 and ri = 0.17), the JSB4-DL-fire considerably 
increases the correlations (rd = 0.61, rm = 0.79, ri = 0.37). We also compare their seasonality during 2011–2015 
(DL evaluation period), showing that the month to month variability in JSB4-simple is highly underestimated, 
showing a limited range in monthly burned area values, whereas spatial and seasonal patterns of JSB4-DL-fire 
generally match well with GFED4 (Figure S3 in Supporting Information S1).

Regionally, the performance of JSB4-DL-fire is most marked in SHSA and SHAF (Figures 4e and 4i) with scores 
higher than 0.8 of rd (Table  6). JSB4-DL-fire also effectively reduces underestimation in NHAF and AUST 
(Figures 4h and 4n) as well as the overestimation in BONA, BOAS and CEAS (Figures 4a, 4i, and 4k). Among 
14 regions, JSB4-DL-fire enhances rd in 9 and rm in 12 of them. In terms of interannual variability, the biggest 
improvement is found in BOAS, increasing ri from 0.1 to 0.76, whereas the variability in SEAS and MIDE are the 
least predictable (−0.04 and −0.12, respectively). Although JSB4-DL-fire outperforms JSB4-simple in general, 
in comparison to the model validation results forced by observation (Table 6), the predictability of DL-fire is 
degraded over almost all the regions by integrating with JSBACH4. These changes in predictability by being 
coupled with JSBACH4 will be further discussed in terms of JSBACH4 internal biases in the next section.

3.3. Model Interpretation

To understand how the DL fire model makes its predictions, we implement LRP for evaluating the contribution 
of each predictor. Globally, the fraction of bare land shows the highest absolute attribution with more than 16.3% 
of relevance score (Figure 5a). Its role, as a key component in identifying no or low risk of fire, is highlighted 
across regions, where there are large portions of arid lands or deserts, such as SHSA, MIDE, SHAF, and AUST 
(Figures S4e, S4g, S4i, and S4n in Supporting Information S1). Fuel load also shows a high ratio of contribution 
(14.1%) based on its multiple roles as a constraint (7.4%) as well as an input of L-LSTM (6.7%). The volume of 
water in the 4th soil layer (SWL4) counts as the 3rd key factor associated with burned fraction in that it can be 
considered an extreme condition when dryness has reached deeper soil layers. Considering that the sum of soil 
dryness-related variable scores occupies 34.4% of the total relevance, the changes in soil dryness play as key 
drivers in the DL-fire.

NME MPD rd rm ri

Global 0.67 (0.75) 0.31 (0.30) 0.61 (−0.07) 0.79 (−0.07) 0.37 (0.17)

BONA 0.72 (2.34) 0.36 (0.34) 0.62 (0.45) 0.85 (0.56) 0.71 (0.44)

TENA 0.71 (2.49) 0.35 (0.28) 0.37 (0.32) 0.64 (0.48) 0.82 (0.82)

CEAM 1.53 (1.08) 0.19 (0.24) 0.70 (0.61) 0.82 (0.72) 0.62 (0.37)

NHSA 0.61 (0.68) 0.21 (0.21) 0.55 (0.61) 0.72 (0.71) 0.51 (0.53)

SHSA 0.83 (0.85) 0.21 (0.20) 0.81 (0.71) 0.89 (0.77) 0.78 (0.62)

EURO 0.70 (2.06) 0.38 (0.36) 0.29 (0.32) 0.55 (0.50) 0.34 (0.32)

MIDE 7.96 (6.10) 0.32 (0.31) 0.12 (0.61) 0.34 (0.75) −0.12 (−0.18)

NHAF 0.58 (0.67) 0.37 (0.44) 0.75 (0.35) 0.87 (0.39) 0.80 (0.65)

SHAF 0.76 (0.82) 0.33 (0.28) 0.84 (0.80) 0.91 (0.86) 0.35 (0.14)

BOAS 0.68 (1.40) 0.35 (0.36) 0.60 (0.27) 0.78 (0.35) 0.76 (0.10)

CEAS 0.61 (1.39) 0.39 (0.32) 0.57 (−0.24) 0.67 (−0.32) 0.29 (−0.22)

SEAS 2.05 (0.88) 0.25 (0.19) −0.02 (0.40) −0.03 (0.54) −0.04 (0.32)

EQAS 0.50 (0.81) 0.25 (0.26) 0.41 (0.63) 0.77 (0.74) 0.80 (0.90)

AUST 0.81 (0.72) 0.26 (0.33) 0.70 (0.48) 0.78 (0.55) 0.42 (0.62)

Table 6 
Evaluation Metric Scores for JSB4-DL-Fire (JSB4-Simple)
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Meteorological predictors, despite their small impacts in the global aspect (6.2%, Figure 5b), display signif-
icant importance in some tropical and high latitude regions. For instance, tropical rain forests are very 
fire-resistant during the wet season due to high humidity. Models trained over NHSA and EQAS show 
high relevance of relative humidity and temperature to capture the climatic characteristics and their distinct 
seasonality (Figures S4d and S4m in Supporting Information S1). The strong influence of meteorological 
predictors is also noticeable over BONA and BOAS, especially temperature contributes the most (12.3% and 
16.4% respectively) (Figures S4a and S4j in Supporting Information S1). These results are associated with 
fire-climate interactions in boreal forests where fire frequency and extent are affected depending on temper-
ature variation (Hu et al., 2015; Kim et al., 2020) and their positive feedbacks under climate change (Oris 
et al., 2014).

4. Discussion and Conclusion
In this study, we introduce a deep learning based fire model (DL-fire) and implement it within the physics-based 
land surface model JSBACH4. The DL-fire predicts burnt fraction based on weather conditions, land proper-
ties and anthropogenic effects, performing well in predicting spatial and seasonal variation. When the DL-fire 
operates as a coupled module within JSBACH4 (JSB4-DL-fire), the quality of fire damage simulation improves 

Figure 3. Spatial maps of burnt fraction and its seasonality. The maps on the left (a. JSB4-DL-fire, c. JSB4-simple and e. GFED4) show annual burnt fraction averaged 
over the years 2001–2015, and the right (b. JSB4-DL-fire, d. JSB4-simple, and f. GFED4) visualize the peak month of burnt fraction. All areas with annual burnt 
fraction less than 0.1%/yr are masked out (white).
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noticeably compared to the simple fire scheme in JSBACH4. However, the predictability of JSB4-DL-fire is not 
as accurate as the validation results of DL-fire forced by observation. Since the only differences between the two 
are from land property predictors, either observed or simulated, its main reason is presumed to be internal biases 
of JSBACH4.

Figure 4. Comparison of monthly mean burnt fraction. Burnt fractions for GFED4 (black), JSB4-DL-fire (red), JSB4-simple (green) during 2001–2015 and DL-fire 
(blue) during 2011–2015 are averaged for each month and compared on each GFED region (Figure S1 in Supporting Information S1). Gray shadings indicate 1-sigma 
intervals of the GFED4.

Figure 5. Global predictor importance assessment. (a) Shows predictors with the highest 30 LRP relevance scores and they are color-coded in four groups: weather 
conditions (blue), land properties (green), anthropogenic effects (gray) and PFTs (orange). Full names of PFTs and land use states (LU) are in Tables 3 and 4. (b) 
Compares the relevance between the groups and their scores are displayed on top of bars.
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To investigate the impact of JSBACH4 internal biases on fire prediction, we compare the predictors from a 
validation data set and the simulated by JSBACH4. In terms of global perspective, the JSB4-DL-fire predictions 
overall underestimate burned fraction from May to September, and subsequently its rising and falling seasonal 
pattern is roughly a month lagged from September to February (Figure S5 in Supporting Information S1). These 
similar discrepancies are found in LAI over Africa. The simulated LAI in NHAF is overall underestimated with 
a month lagged peak in its seasonality (Figure S6h in Supporting Information S1). In SHAF, LAI shows opposite 
seasonal behavior from July to November (Figure S6i in Supporting Information S1), causing an underestimation 
of fire damage (Figure 4i).

Regionally, MIDE and SEAS show the most apparent discrepancies due to overestimation in JSB4-DL-fire. 
JSBACH4 shows a tendency to underestimate water contents in all the soil layers (Figures S7–S10 in Supporting 
Information S1), except for the content of the first layer (SWL1) in MIDE (Figure S7g in Supporting Informa-
tion S1). Considering that water availability in the topmost layer plays a vital role for vegetation (Seneviratne 
et  al.,  2010) and agricultural productivity (Battista et  al.,  2016), the biases of SWL1 can mislead DL-fire to 
exaggerate combustible fuel amount or its conditions on the ground. Similarly, overestimated durations of burnt 
fraction and LAI in SEAS coincide with each other (Figure 4l; Figure S6l in Supporting Information S1). To 
effectively address internal biases of physics-based models, it was suggested to merge deep learning as an exter-
nal post-processing method (Reichstein et al., 2019; Son, Kim, et al., 2022; Son, Ma, et al., 2022). However, this 
approach is not directly applicable in this study due to dynamical interactions between predictors and DGVMs. 
Instead, an online training approach, developing the deep learning model concurrently with running DGVMs will 
be our next step to advance the function of DL-fire in ESMs.

Representing interannual variability in global burnt area is yet a continuous effort for improvement in fire-enable 
DGVMs. Most of the DGVMs have not yet proven to successful in reproducing interannual variability (Hantson 
et  al.,  2020), and their limited skills cause uncertainties for the global carbon budget estimation (Bastos 
et al., 2020). Previous DL model showed ability to capture observed interannual patterns, but it still requires 
further verification due to its short evaluation period (Joshi & Sukumar, 2021). Although JSB4-DL-fire either 
performs well at a global scale, significant regional improvements are observed with higher than 0.7 of ri over 
6 out of 14 regions (Table 6). These results suggest that ML/DL based hybrid approach can be a solution for the 
interannual variability problems in DGVMs.

A critical limitation of our DL-fire model is its lack of mechanical understanding. In contrast to process-based 
fire models that incorporate scientific principles to account for physical processes and ecological interactions, our 
current model primarily focuses on estimating burned area statistics without explaining underlying fire processes, 
such as ignition, spread and extinction. Consequently, this limitation can potentially result in inconsistent or unre-
alistic simulations in terms of fire frequency and duration. Furthermore, another issue may arise regarding the 
fire-climate-carbon feedback when the land model is coupled as a part of an ESM, which has not been evaluated 
in this study.

To address the limitations of ML/DL, it has been suggested to develop independent models specifically tailored 
for fire ignition and spread (Tang et al., 2023). Also, there has been a proposal to integrate computational fluid 
dynamics and finite element methods with ML (Ye & Hsu, 2022). These suggestions highlight the potential for 
further advancements in fire modeling by leveraging the strengths of ML/DL in conjunction with established fire 
dynamics. By pursuing these avenues of research, our upcoming study will focus on developing DL processes 
that effectively harmonize fire dynamics.

Humans influence fire regimes in various ways that either promote or limit fire. Population growth and urban 
expansion generally result in the proliferation of human ignition sources, thereby increasing the likelihood of fires. 
In contrast, fire suppression efforts and changes in land-use practices contribute to a decline in fire activity (Andela 
et al., 2017; Bowman et al., 2011). Our model underrates roles of these factors showing conspicuously low global 
relevance (0.05%, Figure 5b). These consequences can be due to a coarse time resolution of anthropogenic data 
set. Since all the anthropogenic variables are interpolated from annual records or used as static values, they cannot 
provide any information associated to seasonal variation or anomalous daily events. Besides, some of the major 
man-made fire damages, particularly agricultural burnings, can be explained by weather seasonality and vegeta-
tion states (Korontzi et al., 2006). However, it should be pointed out that our model globally utilized C3 annual 
crops (c3ann) the most among anthropogenic drivers (Figure S11a in Supporting Information S1) to identify crop 
related activities, and regionally in NHAF, BOAS, SEAS, and EQAS (Figures S11i, S11k, S11m, and S11n in 
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Supporting Information S1). Population follows as the second influential anthropogenic factor and HDI also show 
relatively higher relevances in developed regions (0.02% in TENA and 0.07% in EURO), echoing their socioeco-
nomic impacts on fire (F. Li et al., 2013; Teixeira et al., 2021). These results may suggest its potential of further 
improvement of human impacts on fire activities with more sophisticate data set and adapted model architecture.

Small fires play a crucial role in shaping the global-scale patterns of burned areas and carbon emissions (Van Der 
Werf et al., 2017). However, our current model lacks training data for sub-500m fires, as it is not readily avail-
able on a daily scale. To compensate, we additionally evaluate our model's performance by considering burned 
fractions, incorporating sub-500m fires, but on a monthly scale (Randerson et al., 2012). Overall, the metrics 
demonstrate similar scores (Table S1 in Supporting Information S1), with a slight increase in NME over regions 
where the burnt fraction is underestimated, such as NHSA, NHAF, and SEAS (Figures 4d, 4h, and 4i), due to the 
inclusion of small fire, leading to an augmented observed burnt fraction. EURO shows the most notable decline 
in performance with rm of 0.61, although its biases are reduced by 0.66 in NME. We assume that the presence of 
a very small amount of burnt fractions resulting from Gaussian kernel smoothing prevents significant degradation 
in the model's performance, despite not explicitly considering small fires.

However, this approach does not comprehensively address the imbalance between small and big fires (Table S2 
in Supporting Information S1), which could contribute to the suboptimal performance in extreme burnt fractions. 
The inclusion of small fires and their distinction from big fires should be considered another essential task to 
further enhance the model's predictive capabilities.

Regarding a global or local training approach, it can be argued which one in particular is a better option, either one 
single global model or multiple regional models. A global coverage model can be efficient in terms of model develop-
ment and coupling with DGVMs, but for it not to lose regional characteristics, it may require more trainable parameters 
and higher complexity in architecture. When we tested to train a singular global model with the identical architecture 
as our local models (Figure S12 in Supporting Information S1), its global mean prediction accuracy notably decreased 
(rm = 0.1). As previously discussed (Zhu et al., 2022), the global training approach only demonstrates relatively satis-
factory results across Africa, where high burned areas prevail (NME = 0.73 and 0.72 for NHAF and SHAF, respec-
tively), while substantial biases are observed in other regions with low-fire areas. Considering that we were unable to 
achieve the desired outcome even with a higher dimension of hidden layers (not shown), there is a need to explore more 
advanced model architectures that can effectively incorporate local fire characteristics (Lehmann et al., 2014). For the 
local approach, there are two major points to be considered: (a) the number of regions that should be considered and, 
(b) whether a unified or a specialized model design for each region should be developed. Exploration of these options 
would enable us to further upgrade prediction performances, however, this is not addressed in this study.

One of the main purposes of ESMs is to project climate changes based on future scenarios. However, in this study, 
we decide not to project future fire regime changes with DL-fire, although it is technically executable. This is 
because our model is currently composed of 14 regional models, and it cannot practically reflect global biocli-
matic changes. Finally, we argue that further approaches should focus on developing and training one global DL 
model coupled with the host land surface model, and by that learning aspects of regional fire variability which 
would support conducting fully hybrid projection simulations.

Data Availability Statement
We utilized the burned area data set from the GFED4 archive within the Global Fire Emissions Database 
(Randerson et al., 2015) as the primary target for developing and evaluating our model. Furthermore, meteoro-
logical date were retrieved from ERA5 (Hersbach et al., 2020), lightning climatology data were provided through 
the NASA Earth Science Data and Information System (ESDIS) project and the Global Hydrology Resource 
Center (GHRC) Distributed Active Archive Center (DAAC) (Cecil et al., 2014). The Earth Science Data Systems 
(ESDS) facilitated access to LAI from the MCD15A3H version 6 of the Moderate Resolution Imaging Spectrora-
diometer (Myneni et al., 2015). Global topography data are credited to Amatulli et al. (2018), GDP and HDI data 
sets are attributed to Kummu et al. (2018). Population density data were obtained from the History database of the 
Global Environment (Klein Goldewijk et al., 2017), total road density data was sourced from the Global Roads 
Inventory Project data set (Meijer et al., 2018), and land use states were acquired from the Land-Use Harmoniza-
tion project (Hurtt et al., 2020). Our model simulation results are openly available in Zenodo at Son et al. (2023).
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