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Abstract: Crop classification is an important remote sensing task with many applications, e.g.,
food security monitoring, ecosystem service mapping, climate change impact assessment, etc. This
work focuses on mapping 10 crop types at the field level in an agricultural region located in the
Spanish province of Navarre. For this, multi-temporal Synthetic Aperture Radar Polarimetric (Pol-
SAR) Sentinel-1 imagery and multi-spectral Sentinel-2 data were jointly used. We applied the
Cloude–Pottier polarimetric decomposition on PolSAR data to compute 23 polarimetric indica-
tors and extracted vegetation indices from Sentinel-2 time-series to generate a big feature space of
818 features. In order to assess the relevance of the different features for the crop mapping task, we
run a number of scenarios using a Support Vector Machines (SVM) classifier. The model that was
trained using only the polarimetric data demonstrates a very promising performance, achieving an
overall accuracy over 82%. A genetic algorithm was also implemented as a feature selection method
for deriving an optimal feature subset. To showcase the positive effect of using polarimetric data
over areas suffering from cloud coverage, we contaminated the original Sentinel-2 time-series with
simulated cloud masks. By incorporating the genetic algorithm, we derived a high informative
feature subset of 120 optical and polarimetric features, as the corresponding classification model
increased the overall accuracy by 5% compared to the model trained only with Sentinel-2 features.
The feature importance analysis indicated that apart from the Sentinel-2 spectral bands and vege-
tation indices, several polarimetric parameters, such as Shannon entropy, second eigenvalue and
normalised Shannon entropy are of high value in identifying crops. In summary, the findings of our
study highlight the significant contribution of Sentinel-1 PolSAR data in crop classification in areas
with frequent cloud coverage and the effectiveness of the genetic algorithm in discovering the most
informative features.

Keywords: crop type mapping; time series; cloud cover; genetic algorithm; feature selection; radar
polarimetry; common agricultural policy

1. Introduction

Over recent decades, the continuous population growth, climate change, and scarcity
of arable land have raised several challenges with regards to ensuring food security, con-
serving natural habitat and resources, as well as maintaining economic and social stability.
Considering the complexity and seriousness of the above issues, cropland and crop type
mapping are of utmost relevance [1,2]. Timely and accurate remote classification of crops
can support the monitoring and management of agricultural fields, the effective spatial
allocation of agricultural practices and crops, and of course the large-scale prediction of
yield [3–5]. The traditional way of manually documenting fields’ crop type, extent and
location is by carrying out on-the-spot field investigations, which requires a considerable
amount of human resources, time, money, and labor [6]. Nowadays, the use of Earth
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Observation (EO) data acquired from increasingly improving space-borne remote sensing
technologies, and the extended application of artificial intelligence techniques in monitor-
ing and mapping crops offer practical and cost-effective solutions as an alternative to field
visits [7].

The practical benefits of remotely detecting the type and status of crops are highlighted
in the context of European’s Union (EU) Common Agricultural Policy’s (CAP) scheme. CAP
is an initiative for supporting agricultural activities of European countries and providing
subsidies, according to farmers’ declarations about the location, area, and type of their
cultivated fields [8]. European Commission has recently enacted several legal reforms for
enabling the use of EU’s Copernicus Sentinel-1 and Sentinel-2 satellite data, in order to
optimize CAP’s activities and to ensure farmers’ compliance to CAP rules [9]. Each one of
Sentinel-1 and Sentinel-2 missions was designed as a two-satellite constellation that acquire
C-band radar and optical satellite images of Earth, respectively. Sentinel images are freely
available [10,11], providing great opportunities for cost-effective research and application
development in a variety of remote sensing domains. Additionally, the high temporal,
spatial, and spectral resolution of the collected data, combined with the wide area and
global coverage provided [12], render Sentinel satellites an extremely attractive option,
specifically, for effective monitoring of agricultural land and the production of high-quality
crop maps [13].

According to the scientific literature of recent decades, building crop classification
models using optical imagery as input data is one of the most popular approaches [14]. Op-
tical images are constructed based on plants’ spectral responses in different wavelengths of
the ultraviolet, visible, and infrared part of the spectrum [15] and contain rich information
about vegetation’s status and biophysical properties [3,16]. As mentioned earlier, Sentinel-2
satellites provide freely available images of high spatial, spectral, and temporal character-
istics and their great potential in accurate crop type mapping has been demonstrated by
many studies [17–24].

Although optical remote sensing systems offer numerous benefits for extracting valu-
able knowledge and implementing effective innovative solutions in crop classification
research tasks, such systems suffer from an important limitation: the collection of clear,
usable images depends on the atmospheric or weather conditions and, as a result, frequent
cloud cover over an area of interest can render its monitoring challenging or unfeasible [25].
As opposed to the optical systems, satellite missions that are equipped with Synthetic
Aperture Radar (SAR) sensors can acquire images day or night and under all-weather con-
ditions [26], being an extremely valuable source of information for mapping agricultural
fields in countries with frequent rain and cloud cover [27]. Additionally, backscattering
signals of transmitted microwaves are sensitive to the geometric, structural, and dielectric
properties of plants and soil [28], rendering SAR data very useful for effectively discriminat-
ing different types of vegetation cover. Since its launch, the Sentinel-1 mission has gained
increasing attention by the remote sensing community thanks to its great capabilities, such
as its short revisit time, high spatial resolution, dual polarization system, and open access
policy. Specifically, many researchers have evaluated the potential of Sentinel-1 data in
distinguishing different crop types and, in many cases, its contribution to accurate crop
classification has been highlighted [9,29,30]. For example, refs. [29] and [9] both used
Sentinel-1 VV and VH backscatter time-series for identifying tens of different crop types,
achieving very promising results with overall accuracy of more than 70% and 88%, respec-
tively. Ref. [30] used time-series of both Sentinel-1 coherence and backscattering coefficients
to classify 17 crop types in Sevilla, Spain, and achieved an overall accuracy of more than
86%. At this point, it is worth mentioning that the majority of crop classification studies,
making use of Sentinel-1 imagery, follow the typical approach of incorporating, as input
data, only the backscatter intensity information in different polarization channels, while
ignoring information about the phase changes of the microwave radiation. For more details
on studies for crop classification using SAR data, in [2,26] the authors present detailed
review analyses and in the recent work of [31] the authors have carried out an extensive
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review of deep learning applications on SAR data, which highlights the trend so far, as well
as the future research directions.

Compared to SAR data, containing information only for the amplitude of backscat-
tered signals, polarimetric SAR (PolSAR) data are richer in information content, as they
capture changes in both intensity and phase of the electromagnetic waves and are ex-
pected to have a greater contribution in remote crop-type identification applications [32].
As the scientific field of Radar Polarimetry progresses, many polarimetric decomposition
techniques have been proposed for quantitatively analyzing PolSAR data and extracting
information about the scattering characteristics of Earth’s objects [33], and many of them
have been successfully employed in crop classification studies [34]. H/A/α decomposition
method, conceptualized by Cloude and Pottier (1997) [35], is one of the most popular
among them [36] and it is based on the eigendecomposition of the multilooked polarimetric
coherency or covariance matrix. This method was initially developed for the analysis of
quad-pol data and it was later adapted for the dual-pol data case [37]. Covariance matrix’s
eigenvectors is considered to represent the scattering mechanisms, while the associated
eigenvalues express the contribution of each mechanism to the total scattered power [38].
By applying this technique, three main polarimetric parameters can be extracted: entropy
(H), anisotropy (A), and mean alpha angle (α). Entropy indicates the degree of statistical
disorder of the scattering process, anisotropy is a measure of the relative importance of
the secondary scattering mechanisms, providing valuable information in cases of targets
with high values of entropy (H > 0.7), and mean alpha angle value represents the dominant
mechanism taking place in the scattering phenomenon, being single-bounce scattering,
volume scattering, or double-bounce scattering for values close to 0◦, 45◦, and 90◦, re-
spectively [39]. Apart from the three above decomposition parameters, several others
polarimetric parameters can be obtained by the specific method, using the open source
“Polarimetric SAR data Processing and Education Toolbox” (PolSARpro) [40], provided
by the European Space Agency (ESA). Some of them contain information about the eigen-
vectors and eigenvalues of the covariance matrix, while others are calculated based on
different combination of H and A or they are related to Shannon entropy, a parameter that
also quantifies the degree of randomness in the scattering phenomenon [41].

The potential of Sentinel-1 PolSAR data has been moderately examined in several
application contexts, such as land-cover mapping [42–47], crop monitoring [11,28,48–53],
crop yield estimation [54], crop damage detection [55], as well as in other specialized
research areas, such as surface soil moisture estimation [56] and flood extent mapping [57].
Even though numerous studies have examined and demonstrated the contribution of
PolSAR data collected from various SAR missions, such as Radarsat-2, in effective crop
mapping [58–60], there is only a handful of relevant applications that utilize Sentinel-1
PolSAR data [32,42,61–67]. This limited interest might be justified, considering that the
pre-processing workflow of Sentinel-1 PolSAR data is a non-trivial and computationally ex-
pensive task. These studies undertaken to explore the usefulness of Sentinel-1 PolSAR data
exhibit high heterogeneity concerning the study area characteristics, as well as, the input
datasets and classification algorithms that were employed. Some of these studies use only
polarimetric input features to build their crop classification models, reporting satisfactory
overall accuracies from up to 96% [32], while some of them incorporate polarimetric features
as supplementary information in combination with Sentinel-1 backscattering data [64,65,67],
reporting contradictory results about the added value of PolSAR data. In most cases, H, A,
α parameters derived from Cloude–Pottier polarimetric decomposition were used, as well
as the elements of the covariance matrix. Additionally, two of these studies performed
feature importance estimation analysis [32,63], demonstrating that Sentinel-1 polarimetric
attributes are more valuable compared with its corresponding backscattering data and
highlighting that parameters related with Shannon entropy contain valuable information
content for effectively discriminating crop types.

The synergistic use of optical and SAR satellite data is an increasingly adopted strategy
in crop classification studies [3]. By using multi-sensor information, supplementary and
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temporally dense information about vegetation’s properties can be collected [2,68], allowing
to capture significant crop-specific phenological changes within crops’ growth cycles [34,69].
According to the findings of numerous studies [20,21,70–74], integrating data from both
Sentinel-1 and Sentinel-2 missions is of great value to discriminate different crop types,
since better classification results are obtained than employing optical or SAR data alone.
The rich potential of this approach is clearly demonstrated by the research of van Tricht et al.
(2018) [14] that examined multiple object-based classification scenarios, using as input data
different combinations of Sentinel-1 VV and VH polarized backscattering values and
Sentinel-2 images, and found that, in all cases, the joint use of both types of data resulted in
higher overall accuracy. At this point, it should be noted that most of the above studies
make use only of the amplitude information of the collected SAR backscattering signals,
while ignoring the phase information contained in Sentinel-1 PolSAR data. Despite the fact
that there are many recent publications suggesting the integration of these two types of
satellite data in crop classification tasks [32,75], research in this direction remains scarce.
To the best of our knowledge, there is only one study focusing on evaluating both Sentinel-1
polarimetric data and Sentinel-2 optical data contribution in differentiating different types
of crops [62], reporting some very promising results for accurately mapping crops. These
findings are in agreement with another crop classification study carried out by Gao et al.
(2018) [16], who demonstrated that the integration of single date Gaofen-3 PolSAR an
Sentinel-2A optical data resulted in an improved overall accuracy compared with the
classification models built on optical or PolSAR data alone.

The increasing scientific interest in utilizing various types of remotely sensed data
combined with the continuous advancement in remote sensing systems has lead to the
accumulation of dense multi-temporal imagery with richer information content and finer
spatial resolution [76] and, as a result, to the formation of very large datasets with nu-
merous features [77]. Regarding the task of remote identification of crops, such high
dimensional datasets, not only demand for high computational resources, but also may
contain redundant, irrelevant, or misleading information that could diminish significantly
the performance of Machine Learning (ML) classifiers [78]. These negative aspects could be
compensated by applying feature selection methods in order to extract an optimal subset
of predictors [2]. Indeed, various feature selection and feature importance estimation
strategies, especially Random Forest based importance estimation, have been implemented
by a considerable number of crop classification studies [68,79–83]. Another high quality
and extensively used feature selection strategy is Genetic Algorithms (GA). This particular
method exhibits numerous advantages, such as its wide applicability and effectiveness in
dealing with complex problems [84,85], rendering it a very attractive option for feature
selection tasks. Despite the great popularity of GAs in numerous scientific fields [86],
this technique has been moderately used in land-use/land-cover classification studies for
feature selection [77,87–91] and in optimizing the parameters of the employed classification
algorithms [76,91–94].

The research objectives of this study are to explore the capability of PolSAR data to
classify different crop types under diverse experimental setups, (i) as independent input
and (ii) as complementary information combined both with cloud-free and with clouded
Sentinel-2 imagery. Moreover, we aim to assess the importance of the different input
time-series features in order to design a crop classification pipeline that is both accurate
and efficient. To this end, an object-level crop classification approach was adopted in order
to generate crop maps of an agricultural region in Navarre, Spain. Specifically, several
classification scenarios were examined, leveraging multi-temporal PolSAR and optical data
from the Sentinel-1 and Sentinel-2 missions and a Support Vector Machines (SVM) classifier.
Cloude–Pottier polarimetric decomposition was employed in order to extract polarimetric
attributes from Sentinel-1 time-series data. Several studies have used some of the H/A/α
polarimetric parameters in crop classification tasks. However, in this work we assess for
the first time the usefulness of the complete set of 23 H/A/α decomposition polarimetric
parameters, as provided by the PolSARpro software. In total, multi-temporal optical and
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polarimetric features formed a large feature space of 818 attributes. In an attempt to derive
an optimal feature subset of this big feature space, we also implemented a GA as a feature
selection technique. Apart from this, we also performed the computational demanding
analysis of carrying out 100 independent GA experiments and recording the selection
frequency of each individual feature as a means to identify the most informative attributes
for the multi-class crop classification task at hand. In summary, the main contributions of
this work are the following:

1. The extraction of the complete set of H/A/α polarimetric indicators from the Sentinel-1
time-series data and the assessment of their capability of classifying different crop
classes using SVM, which yields promising results with an overall accuracy of more
than 82%.

2. The demonstration of the added value that PolSAR Sentinel-1 data offer when com-
bined with Sentinel-2 optical data for crop classification, in areas that suffer from
extended cloud coverage.

3. The implementation of a custom but robust GA as a feature selection method, which
provides the optimal feature sets for crop classification.

4. A statistical analysis of GA’s feature selection results as a means to estimate features’
relative importance and suggest optimal feature sets of reduced dimensionality (more
than 85% decrease). We show that the spectral and polarimetric characteristics of these
optimal features, in different temporal milestones, can be explained by the phenology
evolution of the different crops included in the dataset.

2. Materials
2.1. Study Area

The study area extends across a small agricultural area of the Navarre district, located
in the northeastern part of Spain (Figure 1). The area of interest surrounds the city of
Pamblona, the capital of Navarre, and occupies approximately 215 km2 that comprises
12,329 crop fields. Navarre’s province is covered by irrigated valleys and forested moun-
tains, with its northern part being dominated by the Pyrenees mountain range. The agri-
cultural zone of interest is characterised by significant fragmentation, resulting in lower
yields compared to the rest of the country [95]. At the same time, the rates of artificial
fertilizers’ use in the region exceeds the national average rate [95]. The 10 most dominant
crop types of the area were taken into account: soft wheat, barley, oats, rapeseed, shrub
grass, sunflower, maize, broad beans, vineyards, and cherry trees. The average area of a
field was approximately 2 ha.

2.2. Reference Data

The Land Parcel Identification System (LPIS) contains the field polygons and the
farmer-declared crop type for each polygon [19]. In this work, we use the regional LPIS data
of 2018. LPIS was offered by INTIA, a public company that is part of Spain’s Department
of Rural Development, Environment, and Local Administration, being, also, the paying
agency for the Navarre district, and responsible for all CAP compliance inspections in the
area. Figure 2 illustrates the onset and duration of the principal growth stages for the major
crops of the study area, along with the corresponding Sentinel-1 and Sentinel-2 acquisitions.
The LPIS polygons were used for generating a field-based feature space, as well as for
training the SVM classifier and evaluating the quality of the generated classification models
using the crop type declarations.
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Figure 1. Study area located in Navarre, Spain. The scale is referred to the map on the left where
the fields of interest are illustrated in light blue color. On the upper right map, the dark blue line
indicates the borders of the entire province of Navarra. In the lower right map, we highlight the
location of Navarra with respect to the entire country.

Figure 2. A timeline of the growth stages of the major crops in the study area, reworked from [96],
presented with Sentinel-1 (red color) and Sentinel-2 (blue color) acquisition dates.

2.3. Satellite Data
2.3.1. Sentinel-1 Data

The Sentinel-1 satellites are equipped with a dual-polarized (VV, VH) C-band SAR
sensor, operating at 5.045 GHz [97]. The sensor’s incidence angle ranges between 29.1◦

and 46.0◦ [11] and data can be collected in both ascending and descending orbit pass
directions. The Sentinel-1 mission operates in four different acquisition modes (Stripmap,
Interferometric Wide swath (IW), Extra-Wide swath, Wave) [12] and has a high revisit
time of 6–12 days (now 12 days due to the loss of Sentinel-1B). In this work, we used 24
Sentinel-1A and Sentinel-1B acquisitions from mid-January to late October of the 2018
growing season. The images were downloaded as Level-1 SLC products and were acquired
in IW swath mode at ascending orbit direction. Each Sentinel-1 IW SLC product captures
approximately a swath of 250 km in length, at 5 m × 20 m spatial resolution in the azimuth
and range direction, respectively. Additionally, it comprises 3 sub-swaths per polarization
and each sub-swath is divided into 9 bursts.
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2.3.2. Polarimetric Data Representation

Fully polarimetric SAR data, captured in different polarization channels (HH, HV, VV,
VH), are often combined into a 2 × 2 complex scattering matrix for each image cell/pixel
(Equation (1)), which is considered an adequate descriptor of point/pure single scatter-
ers [59].

[S] =
[

SHH SHV
§VH SVV

]
(1)

The scattering matrix for dual-polarized SAR systems (e.g., Sentinel-1) has lower
dimensionality and contains half of the polarimetric information involved in quad-polarised
data [98]. Specifically, for the Sentinel-1 case, backscatter measurements collected in VV and
VH polarization channels, is often incorporated into a scattering vector~k = [SVV , SVH ]

T .
By spatially averaging this scattering vector, 2 × 2 multi-looked covariance matrix C2 is
generated at pixel level, as expressed in Equation (2):

〈C2〉 = 〈~k ·~k∗T〉 =
[

C11 C12
C21 C22

]
=

[
〈| SVV |2〉 〈SVVS∗VH〉
〈SVHS∗VV〉 〈| SVH |2〉

]
(2)

where 〈...〉 denotes multi-looking processing, * complex conjugation, and T transposition.
The diagonal elements of the covariance matrix (C11, C22) represent the backscattering
coefficients in VV, VH polarization channels [11], respectively, while C12, C21 elements
express the complex correlation of back-scattered information between VV, VH polarization
channels [67]. Deriving the covariance matrix from the vectorized scattering matrix is
essential for the accurate characterization of distributed targets, such as vegetation [99].

For the purposes of this study, multi-temporal data for 23 polarimetric parameters
(Table 1) were derived from the dual-pol Sentinel-1 PolSAR data by employing the H/A/α
polarimetric decomposition technique in order to obtain information about the scatter-
ing mechanisms of each crop type. By applying this method, covariance matrix data of
each SAR image was subjected to an eigen-decomposition process. Each one of the two
eigenvectors derived from a 2 × 2 covariance matrix is related to one of the two scattering
mechanisms occurring at the particular image cell, while the corresponding eigenval-
ues quantify the relative importance of each scattering mechanism to the total measured
backscattered signal [33].

Specifically, through the process of eigen-decomposition, covariance matrix is ex-
pressed as a weighted sum of two matrices, [C2]1 and [C2]2, representing the two different
scattering mechanisms occurring at pixel level:

〈[C2]〉 = [U]

[
λ1 0
0 λ2

]
[U]T∗ = ∑2

i=1 λi~ui~ui
T∗ = λ1~u1~u1

T∗ + λ2~u2~u2
T∗ = λ1[C2]1 + λ2[C2]2 (3)

[U] =

[
U11 U12
U21 U22

]
=

[
~u1~u2

]
(4)

where [U] is the orthogonal unitary matrix, ~ui (i = 1, 2) is the eigenvector i and λi (i = 1, 2)
is the corresponding eigenvalue i.

Additionally, each C2 eigenvector ~ui can be parameterized, using two angular vari-
ables, αi and δi, denoting the scattering mechanism and the phase angle, respectively [61]
(Equation (5)).

~ui = [cos ai, sin aiejδi ]T , i = 1, 2 (5)

Using the calculated eigenvectors and eigenvalue we are able to compute polarimetric
parameters. The main polarimetric parameters derived by Cloude–Pottier decomposition
are Entropy H, Anisostropy A and mean alpha angle α and they are determined by the
following equations:

H =
2

∑
i=1

pi log2 pi (6)
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A =
λ1 − λ2

λ1 + λ2
(7)

α =
2

∑
i=1

piαi = p1α1 + p2α2 (8)

where pseudo-probabilities pi represent the relative importance of C2 eigenvalues λi
(Equation (9)), allowing for a probabilistic interpretation of the scattering phenomenon.

pi =
λi

∑2
i=1 λi

, i = 1, 2 (9)

According to this view, mean delta angle δ is mathematically expressed in a similar
way to mean alpha angle α, as expressed in Equation (10). Furthermore, Shannon Entropy
(SE) can be obtained by the covariance matrix (Equation (11)), expressing the degree of
randomness of the scattering process.

δ =
2

∑
i=1

piδi (10)

SE = log (π2e2 | C2 |) = SEI + SEP (11)

This polarimetric parameter can also be expressed as a sum of two measures SEi and
SEp, quantifying the degree of randomness related with changes in the back-scattered
signal intensity or phase, respectively [63] (Equations (12) and (13)).

SEi = 2 log (
πeTr[C2]

2
) (12)

SEp = log (4
det[C2]

Tr[C2]
2 ) (13)

where Tr and det represent the trace and determinant of the matrix, respectively.

Table 1. Summary of H/A/α polarimetric parameters.

Parameter Name Parameter Notation

mean scattering alpha angle alpha
first scattering alpha angle alpha1

second scattering alpha angle alpha2
Anisotropy anisotropy

H-A combination 1 [H · A] combination_HA
H-A combination 2 [H · (1− A)] combination_H1mA
H-A combination 3 [(1− H) · A] combination_1mHA

H-A combination 4 [(1− H) · (1− A)] combination_1mH1mA
mean scattering delta angle delta
first scattering delta angle delta1

second scattering delta angle delta2
entropy entropy

Shannon entropy entropy_shannon
Shannon entropy intensity entropy_shannon_I

Shannon entropy intensity normalized entropy_shannon_I_norm
Shannon entropy polarization entropy_shannon_P

Shannon entropy polarization normalized entropy_shannon_P_norm
first eigenvalue l1

second eigenvalue l2
mean eigenvalue lambda

probability 1 p1
probability 2 p2
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Sentinel-1 multi-temporal images underwent a series of pre-processing steps, in order
to obtain time-series data for each one of the 23 polarimetric parameters. In more detail,
we followed the pre-processing workflow recommended by Mandal et al. (2019) [100],
using ESA’s Sentinel Application Platform (SNAP) v.7.0.0 and PolSARpro v.6.0 tools [101],
which is schematically presented in Figure 3. The first step of this pre-processing chain
was the splitting step. As our study site was situated within two successive sub-swaths
of the Sentinel-1 images, these sub-swaths were separated and processed individually,
using Sentinel-1 TOPS Split operator. Splitting operation was followed by performing orbit
correction at each sub-swath, using an Apply-Orbit operator. This pre-processing step
allows for accurate image geocoding, making use of the precise orbit files contained in
each product’s metadata. After applying orbit files, each sub-swath was radiometrically
calibrated and saved in complex-valued format, required for the computation of C2 ma-
trix. SAR calibration allows for directly relating image’s pixel values to the backscattering
signals of the scene [102]. Next, Sentinel-1 Back Geocoding operator was applied to each
sub-swath (slave) in order to co-register it to the corresponding sub-swath of the master
image (captured on 12 January 2018), using the SRTM 3Sec HGT Digital Elevation Model
(DEM), and create a stack of multi-temporal data [100]. Afterwards, TOPSAR Deburst
module was used for joining separate successive bursts of each sub-swath into a single
product. After debursting, separately processed sub-swaths were merged, creating a larger
sub-scene. The following step was to reduce the original image size to the study area’s
extend in order to decrease processing time, using the “Subset” module. Subsequently,
after deleting metadata baseline information from the image stack, Stack Split operator was
used, to separate single date products under processing from the master image, and scat-
tering matrix elements were exported from SNAP to the PolSARPro format. Each SAR
image was then imported into the PolSARpro software and was multilooked (spatially
averaged) with a window size of 4 × 1 (in range and azimuth direction, respectively) pixels
to create ground ranged squared pixels. After generating the multi-looked C2 matrix for
each pixel, each SAR image was filtered by using a Refined Lee Filter [103] with a window
size of 7 × 7 pixels, in order to mitigate speckle noise. The last step of the pre-processing
chain was the application of the “Range Doppler Terrain Correction” algorithm, by using a
SRTM (Shuttle Radar Topography Mission) 1 arc-second Digital Elevation Model (DEM)
and by employing a bilinear interpolation resampling method. As a result, SAR images’
geometric distortions, due to sensor’s varying viewing angle and topological variations,
were corrected and a better geometric representation of Earth’s surface was obtained [104].

2.3.3. Sentinel-2 Data

Sentinel-2 satellites collect multi-spectral optical imagery of high spatial resolution
every 5 days [105]. Both satellites carry a Multi-Spectral Imaging Instrument (MSI) with a
swath width of 290 km, which is designed to capture electromagnetic waves of the visible
and near infrared region to the shortwave infrared region of the spectrum. More specifically,
Sentinel-2 MSI captures targets’ reflectance responses in 13 bands of different wavelengths,
namely B01, B02, B03, B04, B05, B06, B07, B08, B8A, B09, B10, B11, and B12, with various
spatial resolutions of 10, 20, and 60 m.

For the purposes of this study, 19 Sentinel-2 Level-1C images, having the minimum
cloud coverage over the study area, were retrieved from the Copernicus Open Access Hub
during the period January–October 2018, resulting in a dense time-series. The selected
acquisition dates are extended across the entire growth cycle of the cultivated crops and
is expected to hold important information at key phenological stages, such as flowering,
ripening, and harvesting phases. Additionally, the 60 m bands (i.e., B01, B09, and B10) were
excluded. Regarding the images pre-processing, Sentinel-2 products were atmospherically
corrected to bottom of atmosphere reluctance by using Sen2Cor algorithm in the SNAP
software, and all the bands were resampled to 10 m spatial resolution.
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Figure 3. Flowchart of Sentinel-1 data pre-processing.

Apart from using the original Sentinel-2 bands, we evaluated the potential of four vege-
tation indices, namely the Normalized Difference Vegetation index (NDVI), the Normalized
Difference Water Index (NDWI), the Plant Senescence Reflectance Index (PSRI), and the
Soil Adjusted Vegetation Index (SAVI), in categorizing the different types of crops of the
agricultural study area (Equations (14)–(17)). Vegetation indices are calculated via simple
mathematical formulas, by using information of targets’ spectral responses at different
wavelength intervals [106] and provide valuable, additional information about vegetation’s
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status and growth, resulting in better separability between different crop classes [107],
as demonstrated by numerous crop classification studies [108]. In particular, NDVI [109]
is considered the most popular vegetation index in crop monitoring and classification
studies [110], being indicative of vegetation’s status and photosynthetic activity [111].
NDWI proposed by Gao (1996) [112], is an effective indicator of vegetation’s water con-
tent [113]. PSRI, defined by Merzlyak (1999) [114] exhibits great sensitivity in the aging
stage of plant development. SAVI introduced by Huete (1988) [115] reduces soil effect in
NDVI values [106] and is descriptive of crop’s structural characteristics, such as leaf area
index [116].

NDVI =
ρNIR − ρR
ρNIR + ρR

=
B4− B8
B4 + B8

(14)

NDWI =
ρG − ρNIR
ρG + ρNIR

=
B3− B8
B3 + B8

(15)

PSRI =
ρR − ρG

ρNIR
=

B4− B2
B6

(16)

SAVI =
ρNIR − ρR

ρNIR + ρR + L
∗ (L + 1) (17)

3. Methods

The method of this work is schematically presented in Figure 4. The rest of this section
elaborates on the individual steps.

Figure 4. The methodological workflow of this study.
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3.1. Image Partitioning and Feature Space Creation

In this study, an object-based image analysis approach was followed, taking into
account the fact that is more advantageous compared to pixel-based approaches in crop
classification tasks that deal with fields of considerable size [3,26,117]. Specifically, each
image was segmented into field entities based on the LPIS’ polygons. This procedure
resulted in the formation of 12,329 reference fields. Subsequently, the reflectance value of
each field was calculated, for all features, as the mean value of the pixels contained in it.
The code number, the number of fields, as well as the approximate value of the total area
covered in hectares corresponding to each crop class are presented in Table 2.

Table 2. Main characteristics of each crop type.

Crop Type Class Code Number of Fields Total Area (ha)

soft wheat 1 5461 10,922
barley 5 3609 7218
oats 8 1172 2344

rapeseed 35 708 1416
shrub grass 65 326 652
sunflower 33 285 570

maize 4 223 446
broad beans 41 210 420
vineyards 102 208 416

cherry trees 110 127 254

The feature space of this study (Table S1) is made up of 818 features extracted from the
multi-temporal Sentinel-1 and Sentinel-2 images. More specifically, feature space comprises
the Sentinel-2 multi-spectral bands (190 variables), and vegetation indices (76 variables),
as well as a total number of 552 polarimetric variables derived from Sentinel-1 time-series.

3.2. Genetic Algorithm

In our research, we implemented a custom GA in order to derive the most informative
optical and polarimetric features for the crop classification problem at hand. A GA is an
evolutionary, metaheuristic optimization method, conceived by Holland (1992) [118], and
inspired by Darwin’s theory of biological evolution [119]. GAs are part of the family of
population-based algorithms [120]. Based on the theoretical background of this method,
problem features are called genes, which are initially organised in a random way into dif-
ferent subsets of the total feature space, named chromosomes [121]. These feature subsets
represent candidate solutions for the optimization problem at hand [122]. A GA is practi-
cally an iterative process of evaluating chromosomes’ quality using a fitness function and
of improving chromosomes’ fitness through selection, crossover, and mutation processes,
by which eventually an optimal feature subset is derived [86,123].

GA implementation requires the definition of a large set of hyperparameters by the
user, which significantly affect its effectiveness [123]. Population size, as well as crossover
and mutation probabilities, are considered GA as the most important parameters and
selecting them properly, taking into account the nature of the specific optimization problem
at hand [124], is crucial for GA performance [119]. In our research, population size was
set to 100 chromosomes, being a common choice in the literature [125] and ensuring
satisfactory exploratory ability of the solution space with a reasonable computational
cost [126]. Crossover probability was set to 0.9, considered an appropriate value for
allowing the proper exploitation of the current population’s genetic material and the
formation of better chromosomes [84]. Concerning the mutation process, we defined two
mutation probabilities, one related to the probability of a chromosome being subjected
to mutation and another related to the probability of a particular gene being mutated,
following Wirsanky’s methodology [84]. The first one was set to the relatively low value
of 0.2 for improving population diversity, while preventing the GA to turn into a random
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search method [86,121]. The second one was calculated by the ratio 1
N , where N symbolises

the chromosome length [84].
Regarding the design of chromosomes, each gene was coded as a string, referring

to one of the 818 multi-temporal features of the study. Each one of the first-generation
chromosomes, representing a feature subset, was randomly initialised with a number of
unique genes. In our attempt to determine an optimal chromosome length (number of
genes), we examined how this parameter affects the highest weighted average f1 score
obtained at GA’s convergence, as well as the mean computational time required for each
iteration. In further detail, 12 GA implementations were performed, testing multiple values
of the chromosome length parameter, ranging from 10 to 120 with a step size of 10 genes.
The results of these experiments are presented schematically in Figure 5.

(a) (b)

Figure 5. (a) The maximum weighted f1 score obtained for different values of chromosome length.
(b) The mean generation time required for different values of chromosome length.

According to Figure 5a, as the chromosome length increases from 10 to 70 genes,
the maximum weighted average f1 score achieved by the GA at convergence sharply
and gradually improves by 6.5%. However, implementing the GA with a chromosome
length of more than 70 genes, does not contribute to a significant further improvement of
GA’s performance, as the maximum weighted average f1 score obtained reaches a plateau
of approximately 93.5%. This might be explained by the fact that the full feature space
contains plenty of redundant features and, consequently, implementing GA with very
large chromosomes does not lead to better outcomes. Based on Figure 5b, the relationship
between chromosome length and the mean generation time appears to be proportional.
This experimental result is quite reasonable, considering that the greater the number of
genes (features) contained in a chromosome, the more computational time is needed for
training the SVM classifier for each one of population’s chromosomes. Aiming to extract an
optimal subset of spectral-temporal features with rich information content for accurately
discriminating the crop types of the studied agricultural region, we considered the value of
80 genes as an optimal one for the implementation of GA, close to the minimum threshold
(70 genes), in order to achieve the highest possible classification accuracy with the lowest
possible computational cost.

A second-degree polynomial SVM was employed as the function for assessing the
ability of each chromosome to effectively discriminate the crop types of the study area
at each iteration. SVM is a non-parametric supervised machine learning algorithm [127].
This model depends on three important hyperparameters, namely the cost parameter C,
kernel bandwidth γ, and the independent term of the kernel function, denoted by coef0.
The cost parameter determines the acceptable number of misclassification errors and sig-
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nificantly affects model’s generalization ability [128]. In other words, the higher the cost
parameter value, the higher the penalties imposed for margin violations [129], resulting in
the formation of complex decision boundaries and overfitting [107,130]. The complexity of
the decision boundary also depends on the γ parameter, which determines the influence
range of its training sample [131]. The kernel’s independent term coef0 determines the
degree of influence of the high-degree polynomials versus low-degree polynomials in the
classification model [131]. In our implementation, SVM was parameterized as follows: cost
parameter = 1, independent coefficient = 1, and gamma parameter = 0.01. This parametriza-
tion was based on preliminary experiments in order to combine high performance with low
computational complexity. Weighted-averaged f1 score, a classification accuracy metric,
was used as the fitness value of the chromosomes, which is calculated based on the support
of each class [132]. Next, a probabilistic selection strategy was employed, i.e., the roulette
wheel or fitness proportional selection method [86], for choosing the fittest parent chro-
mosomes to take part in the crossover process. In more detail, according to this method,
the probability p(i) of a chromosome i to be selected is proportionate to its fitness value f (i)
and is calculated using the formula p(i) = f (i)

∑n
i=1 f (i) (n is the population size). Apart from

selecting parent chromosomes with the roulette wheel method, an elitism strategy was
applied, conveying the Darwinian principle of “survival of the fittest” [91]. By adopting
this strategy, the fittest chromosomes of each generation are retained and included in the
set of parent chromosomes. More specifically the percentage of the elite parents was set to
20% of the total number of parent chromosomes.

After the selection process, single point crossover was employed [120]. According to
this method, each pair of successive parent chromosomes participates in a probabilistic
crossover process with a probability of 0.9. If crossover occurs, a particular point is ran-
domly selected, where parent chromosomes are split into two parts, and exchange their
genetic material for creating a pair of two new chromosomes. Otherwise, if crossover
does not occur, parent chromosomes directly pass to the next generation of chromosomes.
Subsequently, every chromosome of the new generation is mutated with a probability of 0.1.
If chromosome mutation occurs, every gene is mutated with a probability 1

N = 0.01, which
means that is replaced with another randomly selected feature from the entire feature space;
otherwise, chromosome remains immutable. Finally, GA terminates when 100 iterations
are completed or when the population’s maximum weighted f1 score does not improve for
5 successive iterations. After its termination, GA returns the optimal feature subset, repre-
sented by the best chromosome of the final generation. Our custom GA was implemented
in Python. GA procedure steps, as well as their parametrization details, can be found in the
Supplementary Materials in Figure S1 and Table S2, respectively.

3.3. Crop Classification

Every crop classification procedure of this study was performed using the SVM classi-
fication algorithm. This particular method was selected, considering its high effectiveness,
robustness, and generalization ability, especially when dealing with high dimensional,
low quality, imbalanced, or scarce data [133,134]. Apart from this, SVM algorithm has
already been widely used and proved effective in crop type mapping applications using
remotely-sensed data [19,130,134]. Specifically, four SVM classification models were pro-
duced, based on different sets of input data. In more detail, SVM classifier was trained using
as input data: (1) Sentinel-2 optical features (S2 model), (2) Sentinel-1 polarimetric features
(S1 model), (3) Sentinel-1 polarimetric features and Sentinel-2 optical features combined
(S1/S2 model), as well as (4) an optimal subset of 80 mixed-type features obtained from a
single GA implementation (GA model). Additionally, in an attempt to estimate features’
relative importance, we carried out 100 GA runs and recorded how often a particular fea-
ture appeared in the 100 optimal feature subsets that were derived. We decided to conduct
100 individual experiments, since this number is relatively large, allowing for a statistical
analysis of satisfactory quality with marginally permissible computational costs. The selec-
tion frequency of each feature could be interpreted as a measure of its relative importance
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for the crop classification problem at hand. Based on GA’s feature selection results, we
obtained a sorted list of the most important individual features that were exploited as input
data for the construction of ten additional crop classification models. For all classification
scenarios examined, SVM was implemented by using a second degree polynomial kernel
and its hyperparameters were optimized using the grid-search method. The optimal values
that were derived for each parameter and for all the investigated classification scenarios
are presented in Table S3. Moreover, since we examine a multi-class crop classification
problem, “one-against-one” strategy was employed, combining 45 binary SVM classifiers
for each pair of classes in order to construct a single multi-class classifier [77]. Reference
samples were randomly split into a training (30%) and a testing set (70%), resulting in a
total number of 3698 training fields. The performance of each crop classification model
was evaluated using four accuracy metrics: overall accuracy (OA), as well as class-specific
f1-scores, user’s accuracy (UA), and producer’s accuracy (PA). The classification results
were averaged over 10 runs for each scenario.

4. Results

In this section, we present a comparative analysis for the performance of the SVM algo-
rithm in crop type mapping, using diverse experimental setups. Specifically, in Section 4.1
we have used the actual Sentinel-1 and Sentinel-2 data as derived from the corresponding
satellites and we compare the performance of the SVM model using different features
as input. Table 3 presents the overall comparison of the different experiments for multi-
ple metrics. The main result of this section is illustrated in the last row of the table and
corresponds to the model that utilizes multiple GA runs (more details in Section 4.1.4).
Analytic metrics for all crop types of this model can be overviewed in Table 4. Following,
in Section 4.2 we have applied artificial cloud masks in the Sentinel-2 time-series to simulate
a clouded scenario. Table 5 illustrates the performance of the SVM models trained in the
different clouded input feature spaces. In this case, the same model as before (i.e., the
GA with multiple runs) yielded the best performance. However, here we observe a much
more significant improvement in both individual and overall metrics compared to the
Sentinel-2 model.

4.1. Crop Classification Results

In this section, we present the classification results obtained by using the initial dataset,
containing Sentinel-1 and cloud-free Sentinel-2 imagery, as described in Section 2.3. Table 3
shortly presents the overall performance of the SVM models trained with different inputs.
S1 and S2 refer to the SVM models trained with the time-series data derived from the
Sentinel-1 and Sentinel-2 satellites, respectively, whereas S1/S2 describes the SVM model
trained with all available features. On the other hand, GA refers to the model trained with
a 80-feature set derived from one single GA run. Finally, the last row of the table presents
the results obtained by exploiting 100 GA runs, which is explained in detail in Section 4.1.4.

Table 3. Overall accuracy and macro average values of UA, PA, and f1-score of 5 different SVM
classification models constructed based on the original dataset. With bold is highlighted the best
model for each metric.

Method UA PA f1-Score OA

S2 91.06 88.95 89.93 92.42
S1 76.10 67.68 71.12 82.83

S1/S2 91.09 87.99 89.41 92.28
GA 91.85 90.04 90.85 93.58

GA15 92.75 90.93 91.75 94.00

4.1.1. Crop Classification Results Based on Sentinel-2 Imagery (S2 Model)

The OA and weighted average f1-score achieved by this model are both around 92.40%.
As is also discussed in [19], all metrics are quite high for most crop types, demonstrating the
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high sensitivity of Sentinel-2 measurements to the distinct biophysical properties of crops.
In particular, this model exhibited exceptional distinguishing ability of maize, sunflower,
and soft wheat, as it is quantitatively expressed by the high f1-scores values obtained
(94.99%, 93.97%, and 93.84%, respectively). However, this is not the case for the three
all-year crop classes, namely vineyards, shrub grass and cherry trees, being categorized
with relatively low f1-scores below 86.00%. The poorer separability of these three crop types
might be justified, considering that their spectral signatures, for the majority of optical
features, do not contain any specific temporal characteristics that could distinguish them
from the other ones. Especially, shrub grass presents by far the worst performance in terms
of f1-score values (81.51%). This vegetation type is of a diverse nature, providing various
spectral profiles and, hence, misclassifications are expected. Table S4 presents in detail
the performance of the SVM model that was built using as input data only the Sentinel-2
multi-temporal features.

4.1.2. Crop Classification Results Based on the Combination of Sentinel-1 and Sentinel-2
Multi-Temporal Imagery (S1/S2 Model)

In this scenario, we use all the available variables, both optical and polarimetric,
to train the SVM classifier. The full integration of features did not result in a performance
improvement, compared to the S2 model, achieving an OA of around 92.25%. In terms of
the class-specific accuracy metrics, the S1/S2 model achieved comparable or better results
concerning the discrimination of the majority of crop classes. Specifically, the inclusion of
polarimetric features contributed to a considerable improvement of 1.09% and 1.35% in the
f1-scores of maize and rapeseed, respectively. However, it exhibited a poorer performance
(up to 2.8%) compared to the S2 model for the all-year crop types, as well as for oats. One
possible explanation of this under-performance might be the fact that some polarimetric
features, which are included into the input feature dataset, might not be adequately de-
scriptive of the complex scattering processes occurring on the vegetation cover of these
particular crop types, causing a confusion to the SVM classifier. Another explanation might
be the fact the several crop types, such as oats and soft wheat, may have diverse spectral
properties, but quite similar dielectric and structural temporal characteristics during several
months of the total observation period, with subtle differences that cannot be captured by
Sentinel’s 1 dual-polarized sensor, requiring the collection of PolSAR data from a system
with full polarization capabilities. Table S5 presents the metrics of the SVM model using
both types of data, in detail.

4.1.3. Crop Classification Results Based on Sentinel-1 PolSAR Imagery (S1 Model)

In this scenario, we use only the Sentinel-1 PolSAR features to train the SVM classifier.
As expected, the model performs worse without the information of the optical sensor,
but interestingly OA is quite decent, with a value of 82.83%. This result shows that
polarimetric data are informative enough to adequately classify crops. The classification
results of the each crop category are presented in Figure 6 (and Table S6). For some crop
types in particular, i.e., maize, barley, sunflower, soft wheat, and rapeseed, the performance
is very good. However, per-class accuracies for the all-year crop types (i.e., cheery trees,
vineyards, and shrub grass), as well as the broad beans, are significantly low. On the
one hand, this classification report demonstrates the rich information content of PolSAR
data and showcases its great potential in crop mapping. On the other hand, these results
reinforce the argument that the dual-polarized PolSAR data might have the ability to only
partially describe scattering characteristics, providing models of limited accuracy.
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Figure 6. Classification metrics for the different crop type of the S1 model.

4.1.4. Crop Classification Results Based on Genetic Algorithm’s Results (GA Model)

The results above indicate that the Sentinel-1 multi-temporal polarimetric features
have the ability to distinguish specific crop types. To further investigate the efficient
combination of those features with the corresponding Sentinel-2, we used our custom
GA to identify the most useful ones. At first, we executed a single run of the GA, which
resulted in a list of 80 selected features: 47 optical and 33 polarimetric. This particular
model outperforms the previous ones in terms of both OA achieved (93.60%), as well as the
weighted average f1-score (93.59%), which is higher by more than 1%. Apart from this, it
showcases improvements (1–2%) in most of the individual crop type metrics (Table S7).

Using as input training data the optimal 80-feature subset derived from the GA
significantly enhanced the discriminant ability of the SVM classifier. However, one single
run might not always result in the best feature subset, considering the inherent probabilistic
nature of GAs. In order to overcome this randomness, we carried out a statistical study
of the GA, by running 100 separate experiments and, therefore, extracting 100 different
optimal feature subsets. In an attempt to identify the most informative features among all
818 features, we counted the number of times t that each feature appeared in these different
subsets. This number t can be interpreted as a measure of each feature’s relative importance.
Figure 7 presents the performance of the SVM model when trained with feature appeared
more than t times (GAt model). Specifically, the red line describes the number of features
(right axis) for each different t, whereas the blue and green lines illustrate the OA and
the macro averaged f1-score, respectively (left axis). The thresholds that generate optimal
solutions, i.e., OA above 93.9% and f1-score above 91.5%, are 13, 14, 15, 16, and 17, which
corresponds to 142, 126, 111, 96, and 82 selected features, respectively. This behavior is
expected because, as seen in Figure 5, feature sets of more than 80 features can achieve the
optimum results, when used to train an SVM model.
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Figure 7. The performance of the SVM algorithm trained with features obtained when we apply the
threshold t, in the different 100 subsets results from the GA experiments. The blue and the green
lines present the OA and macro averaged f1-score, respectively, and are associated with the left
y-axis. The red line indicated the number of features for each different run and is associated with the
right y-axis.

Table 4 presents the classification metrics of the GA15 model (i.e., the model trained
with the set of features derived by using t = 15). The scores in each metric and for each crop
type are higher compared to the S2 model, up to 3.15%. The macro f1-score has increased
significantly from 89.93% to 91.75% that can be translated to an increase of 1.82% average
f1-score improvement, in each single crop type, which is a remarkable improvement.

Table 4. Classification report of SVM with 111 features derived when used 15 as threshold.

Crop Type UA PA f1-Score Support

soft wheat 94.55 95.92 95.23 3823
maize 95.04 96.22 95.60 156
barley 93.84 94.35 94.10 2526
oats 93.70 89.13 91.35 820

sunflower 97.55 92.35 94.86 200
rapeseed 96.17 94.80 95.47 496

broad beans 95.83 90.48 93.06 147
shrub grass 85.67 81.84 83.69 228
vineyards 85.00 91.92 88.27 146

cherry trees 90.17 82.25 85.90 89

macro avg 92.75 90.93 91.75 8631
weighted avg 94.01 94.00 93.98 8631

4.2. Performance of Crop Classification Models in Artificially Generated Cloudy Conditions

In Section 4.1, we highlighted how Sentinel-1 PolSAR features accompanied by the
use of a GA, as a feature selection module, can enhance the predictions of a S2 SVM
model for crop classification. Although the results indicated a satisfactory improvement,
we would not expect any dramatic increase. In our study site, cloud coverage was not
a major problem and allowed us to collect temporally dense Sentinel-2 time-series and
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generate highly accurate classification models. However, we could expect the PolSAR
data to make a real difference in regions where clouds are frequent, such as in Northern
European countries. In order to demonstrate this, we generated artificial cloud masks,
by applying over our study site the cloud coverage history per month for Copenhagen,
Denmark. The coverage ranged from 43% for July to 70% for December.

Specifically, we ingested null values into the Sentinel-2 time-series using the corre-
sponding ratio for each month to simulate the cloud distribution. Then, two SVM models
were trained, one using only the new clouded Sentinel-2 data (S2c model) and another
one that combined them with the Sentinel-1 PolSAR (S1/S2c model). Table 5 presents
f1-score, UA, and PA values for the two different models. Unlike the relevant case without
artificial clouds, the S1/S2c model presents a significant increase in almost every single
metric, with a notable improvement of more than 3.5% in f1-score.

Table 5. UA, PA, and f1-score of the SVM model when trained (i) only on the artificially-clouded
Sentinel-2 time-series (S2c model), (ii) both on the artificially-clouded Sentinel-2 time-series and the
Sentinel-1 PolSAR time-series (S1/S2c model), and (iii) on the 120 features derived when used 15 as
threshold (GAc,15).

f1-Score (%) PA (%) UA (%)

Crop S2c S1/S2c GAc,15 S2c S1/S2c GAc,15 S2c S1/S2c GAc,15

wheat 88.38 90.91 92.16 91.08 93.65 94.22 85.84 88.34 90.19
maize 90.60 94.02 93.88 89.23 93.40 92.88 92.16 94.72 94.93
barley 85.83 90.51 91.51 85.08 90.04 91.02 86.60 90.99 92.01
oats 76.57 81.30 84.70 71.98 75.09 80.23 81.83 88.65 89.72

sunflower 87.31 91.67 92.50 86.50 88.75 89.45 88.22 94.85 95.78
rapeseed 84.83 91.40 92.84 81.75 89.21 92.24 88.17 93.73 93.48

broad bean 78.97 82.23 86.98 72.11 76.26 82.11 87.81 89.36 92.55
shrub grass 72.55 73.83 76.36 68.68 70.79 72.68 77.00 77.28 80.50
vineyards 77.99 80.34 83.33 79.11 84.52 85.62 85.62 76.71 81.23

cherry trees 76.32 78.40 83.78 75.96 71.91 82.02 76.99 86.45 85.72

macro 81.94 85.46 87.80 80.15 83.36 86.25 84.19 88.11 89.61
weighted 85.44 89.08 90.60 85.56 89.18 90.66 85.55 89.23 90.67

In the same fashion as in Section 4.1, we run 100 experiments of the GA to acquire the
most dominant features. Regarding the threshold selection, a similar behavior is observed
here too, namely thresholds from 13 to 16 achieved optimum results, with the number of
features ranging from 159 to 94. Table 5 illustrates also the metrics of the model trained with
120 features derived when we set a threshold of 15 (GAc,15 model). The feature selection
procedure improves even more the predictions, compared to the model trained with all
features. Specifically, macro average UA, PA, and f1-score are increased by 1.5%, 2.9%,
and 2.2%, respectively. Finally, in Figure 8 we show a qualitative comparison of the three
models presented in Table 5, where we can observe the same pattern. The S2c only model
fails to identify several cases, whereas the other two predict almost every parcel correctly.
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Figure 8. Crop type maps attained by the three different SVM models. (i) ground truth, (ii) predic-
tions from the S2 model, (iii) predictions from the S1/S2 mode,l and (iv) predictions from the GA
optimal model.

5. Discussion
5.1. Relevance of Sentinel-1 PolSAR Data for Crop Classification

Despite the recent advance in Deep Learning methods for crop classification [135,136],
SVM still remains an excellent alternative. OA when using only Sentinel-2 time-series as
input data is over 92%. Moreover, f1-score is more than 80% for each of the 10 different crop
types, and more than 92% for half of them. This great overall performance of S2 model was
expected, considering that we used high quality imagery with minimum cloud coverage
and high temporal density. Although it is not fair to compare these results with studies
of different areas, several recent studies achieve similar performance [18,22–24,137]. Our
study verifies the value of Sentinel-2 optical images, render this type of data indispensable
for achieving highly accurate crop maps.

To our knowledge, this research is the first one examining the potential of the entire
set of polarimetric parameters that can be extracted using the H/A/α decomposition
technique in crop mapping. In Section 2.3.2, we present in detail each of the aforementioned
polarimetric features. The potential of PolSAR data in identifying different crop types was
assessed both alone and in synergy with optical data. Integrating multi-temporal optical
and polarimetric features resulted in a very large feature space of 818 attributes. The S1
model, as expected, achieved a lower, but very promising, performance (OA more than
82%), compared to the S2 model. In terms of individual crop type metrics, the polarimetric-
based SVM model fails to correctly identify the all-year crop types, but successfully manages
to classify other crop types, such as rapeseed, sunflower, and maize, with class-wise metrics
ranging between 90 and 95%. This is a strong indicator that polarimetric features hold
important information about crops’ phenology [51]. Regarding the S1/S2 model’s results,
even though the joint use of Sentinel-1 PolSAR and Sentinel-2 optical imagery did not
have a significant impact in the OA obtained, we observed some interesting improvements
in the metrics of several classes. This classification ability enhancement of certain crop
types is due to the fact that PolSAR data contains enriched information about vegetation’s
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structural and dielectric properties that is complementary to the spectral reflectances of
plants. However, SVM exhibited a worse performance in categorizing four crop types;
all-year crops (cherry trees, vineyards, shrub grass), as well as oats, compared to the S2
model. This deterioration might indicate that the large feature space (818) contains several
polarimetric parameters that cannot adequately describe the complex scattering processes
of plants due to the fact that Sentinel-1 mission has not full polarization capabilities [64].

By utilizing GA as a feature selection module, we acquired an 80-feature subset,
which included 33 polarimetric attributes. When SVM classifier was trained using, as
input data, this particular mixed-type feature subset, classification accuracies were further
improved. This finding not only showcases the great value of polarimetric parameters,
but also highlights the effectiveness of GAs and the benefits of incorporating them as feature
selection methods in crop classification tasks. Exceptional performance was also exhibited
by the GAc,15 model (i.e., the SVM trained using as input data the first 111 most important
features, which were selected more than 15 times out of 100 GA runs). Figure 9 (no clouds)
illustrates the relative importance of both types of data. The relative importance of each
feature type was calculated, by taking into account only the features that were selected
more than 10 times out of 100 GA implementations, since 10 is the minimum threshold for
acquiring satisfactory classification accuracies (Figure 7). In general, the contribution of
polarimetric parameters is estimated at around 25–30%, demonstrating the usefulness of
PolSAR data as ancillary information in crop classification tasks.

The contribution of Sentinel-1 features is more evident in the case of adding artificial
cloud noise in the original cloud-free Sentinel-2 imagery. In this scenario, the synergistic
use of both optical and polarimetric data contributed to a much better discrimination of
crops (OA increased more than 3.5%), compared with the S2 model. This result clearly
demonstrates the great value of incorporating the cloud-penetrating PolSAR data when
trying to produce accurate crop maps of agricultural areas that suffer from dense cloud
cover conditions. The great usefulness of this type of data in cloudy conditions is also
clearly demonstrated in Figure 9 (clouds), where the relative importance of optical and
polarimetric acquire almost equal values.

Figure 9. The aggregated importance of Sentinel-1 and Sentinel-2 features with and without clouds.

Figure 10 illustrates how the number of features of each data type changes inside
the list of the most valuable attributes as the threshold t increases. This ratio-threshold
relationship was examined in both scenarios of clear and artificially cloudy Sentinel-2
imagery. As it is observed, in both cases, when all individual features are considered
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(t = 0), the relative ratio of Sentinel-1 and Sentinel-2 features is 67% and 33%, respectively,
as expected (see Table S1). According to Figure 10a, which refers to the original case,
as the threshold increases from 0 to 7, the percentage of Sentinel-2 features gradually
increases against the percentage of Sentinel-1 features, which decreases in a complementary
fashion. After the threshold value of 7, where the ratios of the two types are almost equal,
the Sentinel-2 data prevails, approaching a ratio of more than 95% for t > 20. As discussed
in Section 4.1.4, for threshold values ranging between 13 and 17, SVM classifier has optimal
performance. At this range, Sentinel-2 features dominate the list of the best predictors with
a mean ratio of 83%. The corresponding graph in the scenario of artificial cloud masks
exhibits some interesting differences (Figure 10b). As the threshold increases from 0 to
10, Sentinel-2 ratio increases with a slower rate, compared to the original case, and until
t = 25 it present a stable behavior. At the optimal performance threshold range, the two
types of features interestingly contribute in an almost equal degree. For t larger than 25,
Sentinel-2 features slowly occupies a larger part of the list. However, contrary to the original
case, this ratio does not surpass 80%, which indicates that the presence of polarimetric
features is significant even when only a handful of features that present the highest selection
frequencies are considered.

(a) (b)

Figure 10. Evolution of the Sentinel-1 (red) and Sentinel-2 (blue) ratios inside the list of the most
important features as a function of threshold value t for the original case (a) and the artificial clouds
scenario (b). The size of each point corresponds to the number of features for each threshold
considered. Black demarcation lines delineate the threshold range for the optimal performance of
SVM classifier in each case.

5.2. Feature Importance of the Combined Sentinel-1/2 Feature Space

As discussed in Section 4.1.4, our custom GA was employed for a feature importance
estimation analysis, by running multiple GA experiments and recording how many times
each individual feature appeared in the optimal subset. This exhaustive and computational
expensive procedure was followed in order to extract a list of the most valuable predictors
with satisfactory statistical significance. Figures 11 and 12 illustrate the first 25 most
important features in descending order, as recorded for the original case and the case of
artificially generating clouds, respectively (the lists are available in the Supplementary
Material, Tables S8 and S9). The relative importance of each feature was calculated in
the same way as the importance values in Figure 9. In both cases, PSRI and NDWI
were the two features with the highest relative importance. The great contribution of
these particular attributes is quite reasonable, since the different crop types of this study
exhibited large differences in senescence phase onset and their water content across the
observation period. When the original clear Sentinel-2 imagery was used, optical features
dominate the list of the 25 most important features, occupying its three quarters. Apart from
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this disproportion, the optical features have generally higher relative importance values,
ranging from 3.10% to 11.91%, contrary to the polarimetric features, ranging from 0.24 to
3.79%. All vegetation indices, as well as all Sentinel-2 spectral bands, are included in the
most important features list, in accordance with our crop classification results in Section 4.1.
This finding was expected, since optical data hold vital information about the biophysical
properties of plants [22,138]. Despite the superiority of optical features, several polarimetric
parameters related to Shannon entropy and to covariance matrix’s eigenvalues appear
significant contribution. Concerning the second scenario, the presence of artificial clouds
in the Sentinel-2 imagery revealed the hidden value of PolSAR data. Shannon entropy,
second eigenvalue, as well as the normalised Shannon entropy were placed among the top
5 features, followed by Shannon entropy intensity and the normalised value of Shannon
entropy intensity in positions 7 and 8, respectively. Moreover, there is almost a balance
between the number of two types of features. These results are verified by the findings of
recent publications [49–52,63], which clearly demonstrate the great potential of Shannon
entropy, entropy and mean alpha angle in crop monitoring, and crop classification.

Apart from this analysis, we also performed an importance analysis for each month of
the observation period both for the original case and the case of artificially cloudy images.
The relative importance value of each month was calculated in the same fashion as in
features’ relative importance analysis. As illustrated in Figure 13, in both cases, July is the
month with the greater contribution. July’s high competence can be interpreted, considering
that, during this month, summer and winder crops are going through a different stage of
development (inflorescence and maturation, respectively) [137] and, as a result, present
large differences in biophysical and structural properties. For the original case, June
and April are the second and third most informative months, respectively. According to
Figure 2, June is a transitional period in crops’ growth cycle, since winter crops gradually
approaching their full development and summer crops pass into their flowering stage.
Additionally, April is the sowing period of summer crops and the flowering phase of
winter crops and, thus, this month is vital for their accurate discrimination. This order is
different for the second scenario of using artificially generated cloud masks, where May
and June are the following most important months. The significant decrease in April’s
relative importance might be explained, considering that valuable information content
is missed due to the addition of artificial cloud noise. Despite these differences, for the
majority of months, feature importance values do not present significant changes for the
two scenarios examined. We also observe an important contribution of features acquired
during January, which is almost doubled for the case of artificial clouds and on the other
hand a very low contribution of February. These two months are useful for identifying
the all-year crop types and potentially some winter crops. Normally, we would expect
both these months to contribute equally, however from Figure 2 we observe that there
are no available cloud-free Sentinel-2 images during February. Moreover, if we look at
Tables S8 and S9 in the Supplementary Material we notice that Sentinel-2 features during
January are among the most important ones and contribute more often that the Sentinel-1
from either January or February. Based on that, we assume that the information about the
crops during this 2-month period is mostly captured from the Sentinel-2 features derived
in late January and the rest of the Sentinel-1 features in February are redundant and do not
boost the classification performance.
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Figure 11. Feature importance of each feature without clouds. Blue indicates Sentinel-2 and orange
Sentinel-1 features.

Figure 12. Feature importance of each feature with clouds. Blue indicates Sentinel-2 and orange
Sentinel-1 features.
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Figure 13. Feature importance of each month with and without clouds.

5.3. Comparison of the GA with Other Feature Selection Methods

In order to further validate GA’s effectiveness as a feature selection method, we exam-
ined the performance of other well known and widely used feature selection algorithms,
namely Mutual Regression (MR) [139,140], coefficients of Lasso, feature importance of
Random Forest (RF) and Recursive Feature Elimination (RFE) by recursively training RF
and discard the less important features in each iteration. Table 6 presents the OA and
the macro-averaged f1-score for both cases (with and without the addition of artificial
clouds). GA achieves the best performance in both scenarios and, especially, in the case of
artificial clouds, where the f1 score is more than 1.5% higher than any other method. These
experimental results underline GA’s efficiency and robustness, as well as its superiority
compared to other feature selection modules.

Table 6. Performance of the different feature selection methods. Bold indicates the methods with
which the best results are achieved.

No Clouds Clouds

Selection Method #Features OA f1 Macro #Features OA f1 Macro

MR 111 92.63 89.81 120 87.72 83.54
RFE 111 93.54 91.19 120 89.38 85.85

Lasso 111 93.83 91.60 120 89.83 86.03
RF 111 93.18 90.59 120 88.36 83.86
GA 111 94.00 91.75 120 90.66 87.80

5.4. Limitations

It should be pointed out that this work comes with some limitations. Since we did not
have actual ground truth data, we assume the validity of farmers’ declarations to train and
evaluate our models. Even though the declarations in Navarra are expected to be ∼97%
accurate [19], still this can affect to a small degree the training and evaluation process.
Additionally, the proposed methodology has been applied only to a specific area for a
specific year and it should be tested in areas of different agroclimatic characteristics and for
different inspection years to evaluate its generalization capabilities. Finally, the production
of the polarimetric features is a very time-consuming procedure and, therefore, applying
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the proposed pipeline from scratch in another area requires a lot of computational time.
However, we partially mitigate this limitation by proposing to use only a handful of useful
polarimetric features, for the task at hand, based on our analysis.

6. Conclusions

In this paper, a large number of multi-temporal Sentinel-1 and Sentinel-2 dual-PolSAR
features (818) were incorporated into various SVM classification scenarios in order to obtain
high-quality crop-type maps of an agricultural region located in Navarre, Spain. One of the
main contributions of this work is the assessment of the full set of 23 different polarimetric
parameters that can be extracted, by applying Cloude–Pottier decomposition technique
available at the PolSARpro software, for the task of crop classification. Moreover, a custom
GA has been implemented and utilized as a feature selection method to derive an optimal
feature subset out of the high dimensional feature space, as well as to perform a feature
importance analysis for acquiring the most informative features. Aiming to examine the
added value of PolSAR data, as well as the effectiveness of GAs, we trained and evaluated
numerous classification models by making use of the available mixed-type features and
GA’s outputs. The main conclusions of the study come be summed up to the following:

1. The use of all the available optical and polarimetric features improved slightly the
crop classification accuracy. However, when artificial cloud masks were injected into
the original Sentinel-2 imagery, simulating a real world scenario, the added value of
PolSAR data was revealed. The corresponding polarimetric/optical synergistic SVM
model presented an accuracy improvement of more than 3.5%, in comparison with
the optical-based model under artificially cloudy conditions. This experimental result
showcases the potential value of this approach in relevant tasks above agricultural
regions that suffer from frequent cloud cover.

2. By employing our custom GA, we re-identified the most important features in the
scenario of artificial clouds and used them an input data in the SVM classifier. This
particular model exhibited an increased OA by 1.5%, approaching 90.66%.

3. Through a computationally demanding feature importance estimation analysis of
carrying out more than 100 GA experiments, we derived a sorted list of the most
important individual predictors in both scenarios of the original cloud-free Sentinel-2
dataset and the one with the artificial cloud masks that could be effectively utilized
in future studies. This feature importance analysis verified the great contribution
of Sentinel-2 attributes in the original case, as expected, and highlighted the great
relative importance of several polarimetric SAR parameters, such as Shannon entropy,
especially in the case of injecting artificial cloud coverage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14225739/s1, Figure S1: Flowchart of genetic algorithm’s implementation; Table S1: In-
formation about Sentinel-1 and Sentinel-2 images; Table S2: GA’s parametrization; Table S3: SVM
parametrization for each classification scenario; Table S4: SVM classification report using as input
only the Sentinel-2 features (S2 model); Table S5: SVM classification report using as input all the
available features (S1/S2 model); Table S6: SVM classification report using as input only the Sentinel-1
features; Table S7: SVM classification report using as input the optimal 80-feature subset derived
from a single genetic algorithm implementation (GA model); Table S8: Most important features
with the relevant numbers of occurrences (c) among the 100 different feature sets acquired from the
100 different GA runs, for the scenario with no artificial clouds; Table S9: Most important features
with the relevant numbers of occurrences (c) among the 100 different feature sets acquired from the
100 different GA runs, for the scenario with artificial clouds.
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